用[x]表示不大于x的最大整数,则方程x^2-2[x]-3=0 的解的个数为(3)这不是高斯函数吗,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:14:25
用[x]表示不大于x的最大整数,则方程x^2-2[x]-3=0 的解的个数为(3)这不是高斯函数吗,
xœN@_% ֕-/b$0D7M $r$Rn;D%ea La+x D&nwS5u+}wrqCᶅ%mV ^L R Yjb9@!g萺=}sc8ltk8U8%٨ *@' \!֗<`>ߦ i =)L9]X{#zXORX+▞iR/,Fo ݨEKW6l2N1 dξA&MF$6^lb`0,iAyܷ$h[x?mn/3P-(Ǝ3"Lw4lR,EW$#(OAHkyzʊVXĿ.ToQMQ '-mj

用[x]表示不大于x的最大整数,则方程x^2-2[x]-3=0 的解的个数为(3)这不是高斯函数吗,
用[x]表示不大于x的最大整数,则方程x^2-2[x]-3=0 的解的个数为(3)
这不是高斯函数吗,

用[x]表示不大于x的最大整数,则方程x^2-2[x]-3=0 的解的个数为(3)这不是高斯函数吗,
分析:[x]是个欧拉函数.当x为整数时,[x]=x.当x不是整数时有:[x]=x-{x}.其中{x}是小数.所以,方程x^2-2[x}-3=0的解的个数为4个.见下面的证明.
证明:当x是整数时,[x]=x,原方程可写为
x^2-2x-3=0
解以上方程得:
x1=(2-根号下(2^2+4*3))/2=1-4=-3;
x2=(2+根号下(2^2+4*3))/2=1+4=5.
当x不是整数时,[x]=x-{x},原方程可写为
x^2-2(x-{x}}-3=0
此时,{x}是小数,故此可作为常量.于是以上方程可改写为
x^2-2x+(2{x}-3)=0
解以上方程得:
x3=(2-根号下(2^2-4*(2{x}-3))/2
=1-根号下(2^2-4*(2{x}-3))/2;
x4=(2+根号下(2^2-4*(2{x}-3))/2
=1+根号下(2^2-4*(2{x}-3))/2.
所以,方程x^2-2[x}-3=0的解的个数有4个.
证毕.