在椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 10:34:53
在椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离.
xQMN@ 8vJh-'p H& q 1FItS`b:Ӻ%ހd7{IGZooZ_[PkY .Mk2Vm.\.=8% gܲ{S)ɈY;b l`*&Mm뼽=Q0>OH,\HA ׇNQP!XӮӟ''ܺ!+0]Ӝ|M>w]TeQkkGR1BeE@ G yT(ǠI 2VI~%#hUx "{ nYN+I.+gɈ^A&@M㹊_), uh

在椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离.
在椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离.

在椭圆7x²+4y²=28上求一点,使它到直线L:3x-2y-16=0的距离最短,并求此距离.
解法如下:
7*x^2+4*y^2=28 ,即
x^2/4+y^2/7=1
所以设P点坐标为(2cosa,√7sina),则
P到直线的距离d=|6cosa-2√7sina-16|/√(3^2+2^2)
=|8sin(a+b)-16|/√13 (其中tgb=-3√7/7)
当sin(a+b)=1时,有最小值是:8/根号13=8/13 根号13.

楼上的很强
我都忘记了