计算积分,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 02:40:55
计算积分,
xSn@~Vw{RM&8T@iriTT!!P+ZF W`NBb||lƪϝ&d=[Β4!bU8>{rsg`ɵgʍF$ybR/@tp[[+פY.˳)RPYڪtt雲!y!aA|*A@벦wԊ7Uc^SFUMcUF3B%Iwĭ,rv]0K?<_y3 $D49xGIÜ1rnH&i%F;Zu?dzݏw{/̔-͕0` F6p5*u;Fy/KxsW)-k#1 JߖquxVz Σ푬y$df(:D`9whyRQ!⤆ӧqg?u*eE,q LW'a*5X g'_9Kw=xijU;n0:y'\@~QZ

计算积分,
计算积分,

计算积分,
求定积分:[-1,1]∫[(2x²+xcosx)/(1+x²)]dx
原式=[-1,1]∫[2x²/(1+x²)]dx+[-1,1]∫[xcosx/(1+x²)]dx
由于第二个积分中的被积函数f(x)=xcosx/(1+x²)是一个奇函数:
f(-x)=-xcos(-x)/(x+x²)=-xcosx/(1+x²)=-f(x),其在对称区间上的积分=0,故
原式=[-1,1]∫[2x²/(1+x²)]dx=[-1,1]2∫[1-1/(1+x²)]dx=2[x-arctanx]︱[-1,1]=2[(1-π/4)-(-1+π/4)]
=2(2-π/2)=4-π

∫(2x^2+xcosx)dx/(1+x^2)
=∫2x^2dx/(1+x^2)+∫xcosxdx/(1+x^2)
=2x-2∫dx/(1+x^2)+∫xcosxdx/(1+x^2)
=2x-2arctanx+∫xcosxdx/(1+x^2)
∫[-1,1]xcosxdx/(1+x^2)=∫[-1,0]xcosxdx/(1+x^2) +∫[0,1]xcosxdx/(...

全部展开

∫(2x^2+xcosx)dx/(1+x^2)
=∫2x^2dx/(1+x^2)+∫xcosxdx/(1+x^2)
=2x-2∫dx/(1+x^2)+∫xcosxdx/(1+x^2)
=2x-2arctanx+∫xcosxdx/(1+x^2)
∫[-1,1]xcosxdx/(1+x^2)=∫[-1,0]xcosxdx/(1+x^2) +∫[0,1]xcosxdx/(1+x^2) u=-x
=∫[-1,0]xcosxdx/(1+x^2) + ∫[0,-1] -ucos(-u)d(-u)/(1+(-u)^2)
=∫[-1,0]xcosxdx/(1+x^2) +∫[0,-1]ucosudu/(1+u^2)
=∫[-1,-1]xcosxdx/(1+x^2)=0
∫[-1,1]xcosxdx/(1+x^2)
=2x-2arctanx |[-1,1]
=4-2(π/4-(-π/4)
=4-π

收起