求(1+X)(1+2X)···(1+NX)的展开式中X^2项的系数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 03:34:44
求(1+X)(1+2X)···(1+NX)的展开式中X^2项的系数
xN0_F;nc\1yH)#2t",e`C *Z\1,vJ߂JTl Kw՜)Qp2XϷpH|wos맢ÆW/_KdY?{=@ S\E0#gohFDQio;.)~6a T!$$ 30L2%Jh.E KP°øZD@G

求(1+X)(1+2X)···(1+NX)的展开式中X^2项的系数
求(1+X)(1+2X)···(1+NX)的展开式中X^2项的系数

求(1+X)(1+2X)···(1+NX)的展开式中X^2项的系数
设 u = 1+2+3+...+n = n(n+1)/2
从1+x,1+2x,1+3x,.1+nx中任意取2项的组合为x^2的系数
那么x^2的系数为
[ 1*(u-1)+2(u-2)+3(u-3)+...+n(u-n) ] / 2
= [ u^2 - (1*1+2*2+...+n*n) ] / 2
= [ n^2(n+1)^2 / 4 - n(n+1)(2n+1)/6 ] / 2
= ( n - 1 ) n ( n + 1 ) ( 3 n + 2) / 24