求通项公式.【设数列{an}满足:a1=2 a2=1 (an)^2-(an-1)^2/ (an-1)^2= (an+1)^2-(an)^2/ (an+1)^2 (n>=2)求通项公式an】*:括号内为底数!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 09:50:42
求通项公式.【设数列{an}满足:a1=2 a2=1 (an)^2-(an-1)^2/ (an-1)^2= (an+1)^2-(an)^2/ (an+1)^2 (n>=2)求通项公式an】*:括号内为底数!
xSN1|bv]KӲ'"DFɐ#=fo1 #'^n r[|ż;_i&¸v3덲kڸ? ;v(&Y$ IH蘈H#hVB k{$ήi^'tvJ'p#("̶0 K˔V"|;zA2GB@)IY0ƲF_-?޶Kފ[3IYChs& r!M jJM E M\^&GW8w_`y4>7B* k/&q#nzjne}U%~7bY"X/MRy|K D˟

求通项公式.【设数列{an}满足:a1=2 a2=1 (an)^2-(an-1)^2/ (an-1)^2= (an+1)^2-(an)^2/ (an+1)^2 (n>=2)求通项公式an】*:括号内为底数!
求通项公式.
【设数列{an}满足:a1=2 a2=1 (an)^2-(an-1)^2/ (an-1)^2= (an+1)^2-(an)^2/ (an+1)^2 (n>=2)求通项公式an】
*:括号内为底数!

求通项公式.【设数列{an}满足:a1=2 a2=1 (an)^2-(an-1)^2/ (an-1)^2= (an+1)^2-(an)^2/ (an+1)^2 (n>=2)求通项公式an】*:括号内为底数!
[an²-a(n-1)²]/a(n-1)²=[a(n+1)²-an²]/a(n+1)²
a(n+1)²a(n-1)²-an²a(n-1)²=a(n+1)²an²-a(n+1)²a(n-1)²
2a(n+1)²a(n-1)²=an²[a(n+1)²+a(n-1)²]
2/an²=1/a(n-1)²+1/a(n+1)²
1/an²-1/a(n-1)²=1/a(n+1)²-1/an²
1/a1²=1/4 1/a2²=1
1/a2²-1/a1²=1-1/4=3/4
数列{1/an²}是以1/4为首项,3/4为公差的等差数列.
1/an²=1/a1²+(n-1)(3/4)=(3n-2)/4
an²=4/(3n-2)
an=2/√(3n-2)=2√(3n-2)/(3n-2)
数列{an}的通项公式为an=2√(3n-2)/(3n-2)