讨论函数再x=0处的连续性与可导性f(x)= x sin 1\x ,x不等于00 ,x=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 03:50:19
Gra`fo^6
讨论函数再x=0处的连续性与可导性f(x)= x sin 1\x ,x不等于00 ,x=0
讨论函数再x=0处的连续性与可导性
f(x)= x sin 1\x ,x不等于0
0 ,x=0
讨论函数再x=0处的连续性与可导性f(x)= x sin 1\x ,x不等于00 ,x=0
x=0时,f(x)连续,x趋近于0时,sin(1/x)为有界量,x为无穷小,相乘为0,所以连续;
至于导数你求一下左导数和右导数,即x0时的导数,看x趋近于0时是否相等就行,应该是不可导的,你求一下.
x=0时不连续,不可导
连不连续就看极限和函数值关系。x趋近于0,xsin(1/x)会趋近于0的,因为-1≤sin(1/x)≤1,所以x>0时0≤xsin(1/x)≤x,x、0在x趋近于0+的时候都是0,由夹逼原理可知x→0+时xsin(1/x)极限是0。完全类似可以证x<0的时候极限x→0-也是0。所以在0这一点x左右极限相等,均等于函数值0,所以连续。
看可不可导就列出定义式。f'(0)=[f(△x+0)-f...
全部展开
连不连续就看极限和函数值关系。x趋近于0,xsin(1/x)会趋近于0的,因为-1≤sin(1/x)≤1,所以x>0时0≤xsin(1/x)≤x,x、0在x趋近于0+的时候都是0,由夹逼原理可知x→0+时xsin(1/x)极限是0。完全类似可以证x<0的时候极限x→0-也是0。所以在0这一点x左右极限相等,均等于函数值0,所以连续。
看可不可导就列出定义式。f'(0)=[f(△x+0)-f(0)]/[△x-0](△x→0)=sin(1/△x)(△x→0)
显然(△x→0)时候sin(1/△x)值不定,可以在[-1,1]之间震荡,越来越快,所以没有极限,也就是导数不存在,这一点不可导。
收起
因为|sin(1/x)|≤1,有界 lim(x→0)xsin(1/x)=0 所以连续 lim(x→0)[xsin(1/x)-0]/(x-0)=lim(x→0)sin(1/x)不存在所以不可导
函数x=0是否连续:只需要验证这一点的函数值是否等于这一点的函数值 所以函数在x=0 是连续的. 可导性证明:按照导数的定义 极限不存在,所以函数在x=0 不可导。