过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 07:03:18
过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值
xőMNPĀh`Ct4iFhRuФG5h@iI\yn.sO{#ř+#K=ٲ*V㰛"_|̦}}$88 p8o3tgr47q8bJb_#GS}bS,f\DDm>E==;]dc oy"g2.d<PU S&:vx(-Ttrz[ TudAU +$Ul_j^n.$.EzR+AW

过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值
过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值

过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值
设点P(x0,y0)
渐近线方程为y=±bx/a
点Q(-ay0/b,y0),R(ay0/b,y0)
向量PQ*向量PR=((-ay0/b) -x0,0)( (ay0/b) -x0,0)=-(ay²0/b²)+x²0 ...(1)
由x²0/a²-y0²/b²=1得x²0-a²y0²/b²=a²
∴(1)式=a²
∴得证.

过双曲线x2/a2-y2/b2=1(a>0,b>0)的一个焦点作一条渐近线的垂线,垂足恰好落在曲线x2/b2+y2/a2=1上,则双曲线的离心率为 设双曲线x2/a2-y2/b2=1(0 设双曲线x2/a2+y2/b2=1(0 双曲线x2/a2-y2/b2=1(0 1.设双曲线x2/a2+y2/b2=1(0 双曲线x2/a2-y2/b2=1(0 1.设双曲线x2/a2+y2/b2=1(0 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值 双曲线 x2/a2-y2/b2=1与x2/b2-y2/a2=1的相同点?高手请教! 已知双曲线C:x2/a2-y2/b2=1(a>,b>)与椭圆x2/18+y2/14=1有共同的焦点,点A(3,根号7)在双曲线C上.求(1)双...已知双曲线C:x2/a2-y2/b2=1(a>,b>)与椭圆x2/18+y2/14=1有共同的焦点,点A(3,根号7)在双曲线C上.求(1)双曲线C 已知点(2,3)在双曲线c:x2/a2-y2/b2=1上,c的焦距为4,则他的离心率为 抛物线y2=2px焦点F恰好是双曲线x2/a2-y2/b2=1的右焦点,且双曲线过点(3a2/p,2b2/p),则该双曲线的渐近线方程 已知双曲线C:x2/a2 - y2/b2 =1,若存在过右焦点F的直线与双曲线C相交于A,B 两点 且 向量AF =3 BF ,则双曲线离心率的最小值为 已知双曲线C: x2/a2 - y2/b2 =1,若存在过右焦点F的直线与双曲线C相交于A,B 两点 且 向量AF =3 BF ,则双曲线离心率的最小值为 已知双曲线C:x2/a2-y2/b2=1,(a,b>0)的左右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线,垂足为H,若F2H的中点M在双曲线C上,则双曲线C的离心率为多少 双曲线y2/a2-x2/b2=1 上焦点F1下焦点F2,求焦半径公式 求双曲线x2/a2-y2/b2=1上一点P(x0,y0)处的切线方程.