设P为双曲线 X^2/a^2 一y^2=1 虚轴的一个端点,Q为双曲线上的一个动点, 则 |PQ|的最小值为求步骤清晰

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 06:41:17
设P为双曲线 X^2/a^2 一y^2=1 虚轴的一个端点,Q为双曲线上的一个动点, 则 |PQ|的最小值为求步骤清晰
xRN@~&&mJ{Ėg(7# .*'0ޙn250(0>ՠ˅#3LyAcѩ7pm, 89%zDM* |h~T_b~pb8 v^ i[## B3$~'؊ޕd➑%.Yu"|nn\8]ԄC?MX4kX

设P为双曲线 X^2/a^2 一y^2=1 虚轴的一个端点,Q为双曲线上的一个动点, 则 |PQ|的最小值为求步骤清晰
设P为双曲线 X^2/a^2 一y^2=1 虚轴的一个端点,Q为双曲线上的一个动点, 则 |PQ|的最小值为
求步骤清晰

设P为双曲线 X^2/a^2 一y^2=1 虚轴的一个端点,Q为双曲线上的一个动点, 则 |PQ|的最小值为求步骤清晰
不妨设P是虚轴的上端点,即P(0,1)
设Q(x,y),则:x²/a²-y²=1,可得:x²=a²+a²y²
PQ²=x²+(y-1)²
把x²=a²+a²y²代入得:
PQ²=a²+a²y²+(y-1)²
=(a²+1)y²-2y+a²
看做是关于y的二次函数,开口向上,对称轴为y=1/(a²+1)
显然当y=1/(a²+1)时,PQ²有最小值,PQ²(min)=1/(a²+1)-2/(a²+1)+a²=a²-1/(a²+1)
所以,PQ的最小值为:√[a²-1/(a²+1)]

不妨设P(0,1),过点P做圆,联立令Δ=0,解得的最小半径即为所求

设P为双曲线 X^2/a^2 一y^2=1 虚轴的一个端点,Q为双曲线上的一个动点, 则 |PQ|的最小值为求步骤清晰 设双曲线x2+y2=1上一点P(a,b)到直线y=x的距离为根号2,其中a>b.求a,b 求双曲线离心率的变化范围过双曲线(x^2/a^2)-(y^2/b^2)=1的右焦点F作双曲线斜率大于零的渐近线的垂线l,垂足为P,设l与双曲线的左、右两支相交于A、B.(1)求证:点P在双曲线的右准线上.(2)求 双曲线的性质及其应用设双曲线的中心在原点,准线平行与X轴,离心率(根号5)/2,且点P(0,5)到此双曲线上的点的最近距离为2,求双曲线的方程.已知双曲线X*X-Y*Y/2=1与点P(1,2),过P点作直线L与双曲线 设p为等轴双曲线为x^2-y^2=a^2(a>0)右支上的一点,F1F2是左右焦点,若向量PF1乘以PF2=0,向量PF2=6,求双曲求双曲线方程. 设双曲线X^2/a^2-Y^2/b^2=1(a>0,b>0)的左右顶点分别为A1、A2若点P为双曲线右支上的一点且直线PA1、PA2...设双曲线X^2/a^2-Y^2/b^2=1(a>0,b>0)的左右顶点分别为A1、A2若点P为双曲线右支上的一点且直线PA1、PA 设F1,F2,是双曲线x^2/4-y^2=1的焦点,点p在双曲线在双曲线上,且角F1DF2=90°,则点p到x轴的距离为? 【双曲线标准方程】设双曲线x^2/4-y^2/2=1的两个焦点为F1,F2接下去:点P在双曲线上,若角F1PF2=90°,则P点坐标为多少? 设f1,和f2为双曲线x^2/a^2-y^2/b^2=1的两个焦点,若f1,f2,p(0,2b)是正三角形的三个顶点,则双曲线的离心率为 设f1f2和f2为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,若f1、f2、p(0,2b)是正三角形的三个顶点,则双曲线离心率是? 设双曲线x^2/a^2-y^2=1(a>0)的焦点为F1,F2,点P在双曲线上,且向量PF1*向量PF2=0求△F1PF2的面积 设双曲线X²/a²-y²=1(a>0)焦点为F1,F 2,点p在双曲线左支上,向量PF1x向量PF2求离心率e 设双曲线x^2/a^2-y^2/b^2=1的左右焦点为F1,F2,P是双曲线右支上的一点设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线右支上的一点,△PF1F2的内切圆与x轴切于点Q(1,0),且|F1Q|=4,求双 双曲线渐近线方程问题设F1,F2分别为双曲线x^2/a^2-y^2/b^2=1的左右焦点若在双曲线右支上存在点P满足PF2=F1F2且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 一道关于双曲线的高中数学题已知双曲线C的中心在原点,对称轴为坐标轴,其一条渐近线方程是x+y=0,且双曲线C过点P(-√2,1)1) 求此双曲线C的方程.(已求得,为:x^2-y^2=1)2) 设直线l过点A(0,1), 直线y=1/2x+1与双曲线y=k/x交于P,PA⊥x轴,与y轴交与B,PA+AB=6求双曲线方程设直线与双曲线有一交点为C,求S△POC写出一次函数值大于反比例函数值时x的范围 设P(x,y)是双曲线x^2/a^2 -y^2/b^2=1上的任一点,过P作双曲线两条渐近线的平行线,分别交渐近线于Q,P,设P(x,y)是双曲线x^2/a^2 -y^2/b^2=1上的任一点,过P作双曲线两条渐近线的平行线,分别交渐近线于Q,P, 设P为双曲线X^2-Y^2=1上的一点,F1,F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为(...设P为双曲线X^2-Y^2=1上的一点,F1,F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为(