已知a,b为锐角,a+b≠90°,3sinb=sin(2a+b) 求tanB最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 22:28:27
已知a,b为锐角,a+b≠90°,3sinb=sin(2a+b) 求tanB最大值
xRN@&&-A=_0N.HhTh@EHDh"G)&^Z*`t`rC$I1n^Fu.IM ɫۇFz˯Y""bLR_>T̓BHE4v&@ 8Üq34l-xz0G2Dhy o2Ĕq Qf0RE^/^Q #ґh_fP#| I9[eTix`i+ut ns4vUDD ? p_}3J0 `QR(w6)tAη-ߤrZEADbn]-i_uF[q? C6ڼRg܍1/_

已知a,b为锐角,a+b≠90°,3sinb=sin(2a+b) 求tanB最大值
已知a,b为锐角,a+b≠90°,3sinb=sin(2a+b) 求tanB最大值

已知a,b为锐角,a+b≠90°,3sinb=sin(2a+b) 求tanB最大值
3sin[(a+b)-a]=sin[(a+b)+a]
3sin(a+b)cosa-3cos(a+b)sina=sin(a+b)cosa+cos(a+b)sina
sin(a+b)cosa=2cos(a+b)sina
tan(a+b)=2tana
(tana+tanb)/(1-tanatanb)=2tana
tana+tanb=2tana -tan²atanb
tanb=tana/(1+tan²a)≤tana/(2tana)=1/2
当且仅当 tana=1时,tanb有最大值为1/2

因为3sinb=sin(2a+b)化简得:tanB=【sina*cosa】/(sina²+1)
即:tanB=【sina√(1-sina²)】/(sina²+1)
又因为【sina√(1-sina²)】≦sina²+(1-sina²)=1(当sina=1/√2时取等号)
所以tanB ≦1/(2(sina²...

全部展开

因为3sinb=sin(2a+b)化简得:tanB=【sina*cosa】/(sina²+1)
即:tanB=【sina√(1-sina²)】/(sina²+1)
又因为【sina√(1-sina²)】≦sina²+(1-sina²)=1(当sina=1/√2时取等号)
所以tanB ≦1/(2(sina²+1)
即tanB ≦1/3
所以tanB 的最大值为1/3

收起