在三角形ABC中,(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:35:48
在三角形ABC中,(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC,
xTAn@1P)+ sJثlRT.6!ICS%rR1za+׋{jdb7mJzLLmoΗV&Ζ^VWJ(բO|lO+B6&nacd]f0FrE}]3'Oc&f(0AD VZf~x]x|(s+i__Csʏ;a#zCNL9UU+kP x!]zzIG(nz\7\(si%Qg(w,SK'Rs9qJvQ 3 '=`6Lciu. i, L`;أhpm'wؼ'Ln96w88K% +c >mY/#PЅhhg̾Hu\

在三角形ABC中,(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC,
在三角形ABC中,(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC,

在三角形ABC中,(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC,
(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC
(sinB+sinC)^2-(sinA)^2=3sinBsinC
(sinB)^2+(sinC)^2-sinBsinC-(sinA)^2=0
由正弦定理,a/sinA=b/sinB=c/sinC,得
b^2+c^2-bc-a^2=0
而由余弦定理,a^2=b^2+c^2-2bc*cosA
可知cosA=1/2,角A=60°.求出sinA再代入原式就可以得到B和C了.

好象无法求解B,C

(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC
(sinB+sinC)^2-(sinA)^2=3sinBsinC
(sinB)^2+(sinC)^2-sinBsinC-(sinA)^2=0
由正弦定理,a/sinA=b/sinB=c/sinC,得
b^2+c^2-bc-a^2=0
而由余弦定理,a^2=b^2+...

全部展开

(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC
(sinB+sinC)^2-(sinA)^2=3sinBsinC
(sinB)^2+(sinC)^2-sinBsinC-(sinA)^2=0
由正弦定理,a/sinA=b/sinB=c/sinC,得
b^2+c^2-bc-a^2=0
而由余弦定理,a^2=b^2+c^2-2bc*cosA
可知cosA=1/2,角A=60°题目的条件通过正弦定理转化为三边的确定关系,和余弦定理比较得出一个定角60,可以知道三边的确定关系使得一个角元素得以确定,没有其他的补充条件所以B,C无法求出

收起