设f(4x)=lnx,求f(x)的导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:26:21
设f(4x)=lnx,求f(x)的导数
x){n_=&tU<jy~ϳlT_`gCOښTT(*ꛀ4L*4m4J5Az9y@9M0TAHV@+!6yvPGـ9Ov/)Z_D7/xl^w`g @ʤ¶Da6  6'< '}?ՁhW

设f(4x)=lnx,求f(x)的导数
设f(4x)=lnx,求f(x)的导数

设f(4x)=lnx,求f(x)的导数
另u=4x,x = u/4
f(4x)=f(u)=lnx = ln(u/4) = lnu - ln4
f(x) = lnx - ln4
f'(x) = 1/x

令t=4x
f(t)=lnt/4
f'(t)=1/t
变量时可以换的
所以发 f'(x)=1/x

令4x=t,x=t/4
f(4x)=lnx
f(t)=lnt/4
即f(x)=lnx/4
f(x)'=1/4*4/x=1/x