已知函数y=(sinx+cosx)² 求它的最小正周期和最大值.(2)求它的递增区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 10:45:07
xJA_e!ee
$/ZZ2H)LJjBgj_V]ΜsoA8y{כVe7:m~aI>߯КAczwMNniN%iÊ`؋eruAJZQf[EaTB>@p 3.rТk71*C&Ͱ@
C,t˒{mY(01xnu~0!;j \t?.={H/"nj$-VHfH\raIX| m<}̂psVIŀQ`<{oV5ὊdF7S]i+}/*xfyqpf7
AgQ1ՒfC0v~QD>
已知函数y=(sinx+cosx)² 求它的最小正周期和最大值.(2)求它的递增区间
已知函数y=(sinx+cosx)² 求它的最小正周期和最大值.(2)求它的递增区间
已知函数y=(sinx+cosx)² 求它的最小正周期和最大值.(2)求它的递增区间
(1)
y=(sinx+cosx)²=(sinx)²+(cosx)²+2sinxcosx=1+sin2x
所以T=2π/2=π
y最大=1+1=2
(2)
单调增区间满足
2kπ-π/2≤2x≤2kπ+π/2
kπ-π/4≤x≤kπ+π/4
所以递增区间是[kπ-π/4,kπ+π/4],k∈Z.
y=sin²x+2sinxcosx+cos²x
=1+sin2x
T=2π/w=π;ymax=1+1=2
-π/2+2kπ≤2x≤π/2+2kπ,k∈Z
-π/4+kπ≤x≤π+kπ,k∈Z
递增区间为:[-π/4+kπ,π/4+kπ],k∈z
y=(sinx+cosx)²=sin²x+2sinxcosx+cos²x=1+sin2x
最小正周期=2π/2=π
y最大值=1+1=2
递增区间: 2kπ-π/2<=2x<=2kπ+π/2
kπ-π/4<=x<=kπ+π/4
1)
y=(sinx)^2+(cosx)^2+2sinxcosx=1+sin2x
所以T=2π/2=π
y最大=1+1=2
2)
单调增区间满足
2kπ-π/2<=2x<=2kπ+π/2
kπ-π/4<=x<=kπ+π/4
所以递增区间是[kπ-π/4,kπ+π/4],k∈Z.