设函数f(x)=ax2+(b-8)x-a-ab的两个顶点分别是-3和2.(1)求f(x). (2)当函数f(x)的定义域是【0,1】时,求函数f(x)的值域.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 01:16:55
xRN@v(jd#Epinfـ(F&h4j4QHct-+~;"ĭ.\L2;;J)~ x}
6%ŪbB"Yves7o<'87oê2|r6MKyMi5#
+?z+/xcOޢKX@
<Vs+$L^{SHBNqӨHbA[LN6-"`&kx"b8QO¢jvy_Ջ0>$;u|*d^f>?:s9
6FI^CD$5+cKn,db`(Ty_v
设函数f(x)=ax2+(b-8)x-a-ab的两个顶点分别是-3和2.(1)求f(x). (2)当函数f(x)的定义域是【0,1】时,求函数f(x)的值域.
设函数f(x)=ax2+(b-8)x-a-ab的两个顶点分别是-3和2.
(1)求f(x).
(2)当函数f(x)的定义域是【0,1】时,求函数f(x)的值域.
设函数f(x)=ax2+(b-8)x-a-ab的两个顶点分别是-3和2.(1)求f(x). (2)当函数f(x)的定义域是【0,1】时,求函数f(x)的值域.
(1)函数的图像与x轴相交于(-3,0),(2,0)两点得:
f(x)=0的两根是-3和2
由韦达定理得:-3+2=(8-b)/a
-3*2=(-a-ab)/a
解得:a=-3,b=5
∴f(x)=-3x2-3x+18
(2)f(x)=-3x2-3x+18=-3(x+1/2)2+75/4
∵f(x)的对称轴是x=-1/2且图像开口向下
∴f(x)在[0,1]上单调递减
∴当x=0时,f(0)=18
当x=1时,f(1)=12
∴当函数的定义域是[0,1]时,值域是[12,18].
设函数f(x)=ax2+b-8)x-a-ab的两个点分别是-3和2求F(X)
设函数f(x)=ax2+b-8)x-a-ab的两个点分别是-3和2求F(X)
求函数f(x)=ax2-ax+b(a
设a,b,c成等比数列,二次函数f(x)=ax2+bx+c满足f(0)=-4,则函数f(x)最值是
设函数f(x)=ax2+4(a+1)x-3,当x∈[0,2]时,f(x)
函数f(x)=(a+1)lnx+ax2+1.(1)讨论函数f(x)的单调性(2)设a
设f(x)=ax2+bx+2,而f(x+1)-f(x)=2x+3,求a,b.
高一数学函数 .给我指点迷津已知f(x)是二次函数,若f(x)=0 ,且f(x+1)=f(x)+x+1 ,则f(x)的表达式为?我做的是 因为f(x)=0 所以设f(x)=ax2+bx 化简f(x+1)=ax2+bx+a+2a2+b f(x)+x+1=ax2+(b+1)x+1 做到
设f(x)=ax2次方+(b-8)x-a-ab,不等式f(x)>0的解集事(-3.,2) 求f(x)
设函数f(x)=ax2+bx+3a+b的图象关于y轴对称,它的定义域是,求f(x)的值域
设函数f(x)=ax2+bx+c (a>0),且f(1)=-2分之a.设函数f(x)=ax2+bx+c (a>0),且f(1)=-2分之a.求证1函数f(
设函数f(x)=(ax2+1)/(bx+c) (a,b,c∈N)是奇函数,且f(1)=2,f(2)
设函数f(x)=x3-3ax2,其中a大于等于0.求f(x)的单调区间.
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n若a>0且0
设a∈R,二次函数f(x)= ax2-2x-2a,设不等式f(x)>0的解集为A,又知集合B={x│1
1.设函数f(x)=ax2-2x+2,对于满足10)没有零点,则(a+c)/b的取值范围是多少?
设函数f(x)=ax2+bx+3x+b的图像关于y轴对称,且其定义域为[a-1,2a](a,b∈R),求函数f(x)的值域
已知函数f(x)=x3-3/2ax2+b,a,b为实数,1