求y=sinx,x∈【0,π】与y=0围成的区域绕y=1旋转所成的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:23:15
求y=sinx,x∈【0,π】与y=0围成的区域绕y=1旋转所成的体积
xN@_Ĵ)Wvx 6MI )nb$QH wTL%@]s3c3waI:ϛ⪞kzB. 5Z`t:^I[L+f5g#o/akHuu]͍w$GTƬI,&Ԭ XVQ($Wd\aB5Ni0ey؇f+ƣ }tHH&ޓ󌙃/G =ql'A6q #Uf v:?K]Ғ tY**))>-,ʋoͮZ:dnXjn!/

求y=sinx,x∈【0,π】与y=0围成的区域绕y=1旋转所成的体积
求y=sinx,x∈【0,π】与y=0围成的区域绕y=1旋转所成的体积

求y=sinx,x∈【0,π】与y=0围成的区域绕y=1旋转所成的体积
平移得到新的
y=ƒ(x)=sinx-1
体积
V[欲求]=V[1]-V[2]
V[1]为[0,π]长,半径为1的圆柱体体积.
V[2]为ƒ(x)=sinx-1与y=0所围在[0,π]绕y=0旋转得到体积.
V[1]=π
V[2]=∫πf(x)^2dx[from 0 to π]
=∫π(sinx-1)^2dx[from 0 to π]
=∫π(sin(x)^2-2sinx+1)dx[from 0 to π]
=∫π((1-cos2x)/2-2sinx+1)dx[from 0 to π]
=∫π(-cos2x)/2)dx[from 0 to π]
+∫π(-2sinx)dx[from 0 to π]
+∫π(3/2)dx[from 0 to π]
=0+2πcosx[from 0 to π]+3π^2/2
=3π^2/2-4π
V[欲求]
=V[1]-V[2]
=π+(3π^2/2-4π)
=5π-3π^2/2