abc均为正数 且2^a=log(1/2)a(a是真数) (1/2)^b=log(1/2)b 1/2^c=log2c 比较abc大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:50:33
xPNP41 ~
ɽw(h
(ЄF#&CZJEhkL2̜sfPɓމLʓ@7zTq"WCMLj$Zr3`1"X3G@<:aV":CF篰zT1#uLi1HYdj'
abc均为正数 且2^a=log(1/2)a(a是真数) (1/2)^b=log(1/2)b 1/2^c=log2c 比较abc大小
abc均为正数 且2^a=log(1/2)a(a是真数) (1/2)^b=log(1/2)b 1/2^c=log2c 比较abc大小
abc均为正数 且2^a=log(1/2)a(a是真数) (1/2)^b=log(1/2)b 1/2^c=log2c 比较abc大小
画出大概图像,显然可以看出c>b>a 即快又准.
c>b>a .
2^a=log(1/2)a,(1/2)^b=log(1/2)b 这两个式子可以说明a和b都在(0,1)。2^a∈(1,2),则log(1/2)a∈(1,2),(1/2)^b∈(1/2,1),故log(1/2)a>log(1/2)b,则a