高一数学题,学霸快现身!
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 14:07:09
xRRA
M*Kvr3(fY$,W"QX 1%%).r( (K$/_p&C <ӧ;QHwUrxo^l]}kIcݜZ,Oj$#}gX٧+`f|t0-dbPEYE0^g/3aQDEQ(fGrPuYԐJ"=ETDtLQMcjHKQ]IJz8H&9@oEKE1BpDU)EH8%"U)_r+%uưF@>r@bnt?'vk9'άm5
(qWpƅiCk[{N8,O{b>19nPqY"F9_/nwp^2ϊXgy1?A,{r[lح R6
高一数学题,学霸快现身!
高一数学题,学霸快现身!
高一数学题,学霸快现身!
4.
1)f(x)=x^2-2x+2=(x-1)^2+1.
f(x)的对称轴方程为x=1,
而,x∈[-5,5]的中心点是x=0.
那么,f(x)max=f(-5)=(-5-1)^2+1=37.
f(x)min=f(1)=(1-1)^2+1=1.
2).要使y=f(x)在区间[-5,5]上是单调函数,则有二种情况:单调递增和单调递减.
f(x)=x^2+2ax+2,
对称轴方程为:x=-2a/2=-a.
若:单调递增,则有
-a≤-5.
a≥5.
若:单调递减.则有
5≤-a.
a≤-5.
所以,实数a的取值范围是:[5,+∞)或(-∞,-5].
导数学过没,学过的话很简单,求导一下就行了
解:对f(x)求导得
f'(x)=2x+2a
若f(x)在[-5,5]为单调,则f'(x)在[-5,5]上不变号.
则有
f'(5)<=0 或 f'(-5)>=0
即
10+2a<=0 =>a<=-5
-10+2a>=0 =>a>=5
所以a取值范围为(-无穷,-5]U[5,+无穷)
希望我的回答能帮到你