1、在Rt△ABC中,D是斜边AB的中点,AC=6,BC=8,EC⊥平面ABC,且EC=12,则ED=?(答案是13)2、如图(H在体对角线A1C上),在正方体ABCD-A1B1C1D1中,AH⊥A1C交于点H,则A1H:HC=?(答案是1:2)3、P为矩形ABCD所在平面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 10:57:04
1、在Rt△ABC中,D是斜边AB的中点,AC=6,BC=8,EC⊥平面ABC,且EC=12,则ED=?(答案是13)2、如图(H在体对角线A1C上),在正方体ABCD-A1B1C1D1中,AH⊥A1C交于点H,则A1H:HC=?(答案是1:2)3、P为矩形ABCD所在平面
xXKSG+KfA)2)ujwVr@ST3`0c0W AOήt/뙝ծc;J1󛞞7u+^ut]iyR`u`fܺl:;Q{zW]qMQ^ɹ7r?) ˜7bsT<@Ă_av^93QLv>Iܫ"TCaA] g۱ >kT,i[H.ЁIQl>^/lD!SWR>U8y`RFz EiG#=rc:+f-4YEف,\{+)vV{@1P;+oP@Wl8IcK;"g3hIo$B- ֐QP?p랛Jn3rCIv1d) 4qf[gl@~/_ 7% (v >wycFqMtsT9QEJ r+kMeQ]bc}eXT,r2sK:: vR_Ȩ"н:4nz<[j&;J6-'A-U{BuʨlUMTˊ΀/hZĂZR ؖnؖؿ/O [hD x-!qCϣ/;w/hlyV{n9v lEL$+ءq( aF0GW^^hu-\`Ž^^:@3ty{_G*1zv+-)s^2pd}K/V؊e:OV+e8=X"BE/Kb0$OO'?h9+|ln8v7$tI9uƅy.)=ktٟEJ&r6l0y(uOvikNBHH5eHIB_OOt g 7zF .μ:ӉHcuSLTrREx ş(W76+zyёHעHB+cKvZ|x)/F⇉GcvRy,'4O1$w9)ƕ%3Ic^HkSN'@Old͂ W.ƂMW>xbRmbXk1#jkR,͏,QKq^ȠGh/U

1、在Rt△ABC中,D是斜边AB的中点,AC=6,BC=8,EC⊥平面ABC,且EC=12,则ED=?(答案是13)2、如图(H在体对角线A1C上),在正方体ABCD-A1B1C1D1中,AH⊥A1C交于点H,则A1H:HC=?(答案是1:2)3、P为矩形ABCD所在平面
1、在Rt△ABC中,D是斜边AB的中点,AC=6,BC=8,EC⊥平面ABC,且EC=12,则ED=?(答案是13)
2、如图(H在体对角线A1C上),在正方体ABCD-A1B1C1D1中,AH⊥A1C交于点H,则A1H:HC=?(答案是1:2)
3、P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是根号5,根号17,根号13,则P到A点的距离是?(答案是1)
以上三道题需要规范的答题格式哦!
感激不尽!
我晚上就要答案!

1、在Rt△ABC中,D是斜边AB的中点,AC=6,BC=8,EC⊥平面ABC,且EC=12,则ED=?(答案是13)2、如图(H在体对角线A1C上),在正方体ABCD-A1B1C1D1中,AH⊥A1C交于点H,则A1H:HC=?(答案是1:2)3、P为矩形ABCD所在平面
1,∵△ABC是RT三角形,D是斜边AB的中点,AC=6,BC=8 ∴AB=10
∴CD=1/2AB=5 ∵EC⊥平面ABC,且EC=12 ∴△ECD是RT△
又∵CD=5 EC=12 ∴ED=13
2,连结AC,设正方体边长为a
由题意得,△AA1C为直角三角形 AH⊥A1C
∵正方体边长为a,∴A1C=√3a AC=√2a AA1=a
∵AH⊥A1C ∴由余弦定理得,A1H:HC=AA1*COS∠AA1C:AC*COS∠ACA1=
a*(1/√3):√2a*(√2/√3)=1:2
3,设AB=a AD=b PA=c
由题意得
a²+c²=5
c²+b²=13
a²+b²+c²=17
∴a=2 b=2√3 c=1
∴P到A点的距离是1

第一题。因为EC垂直于面ABC,所以EC垂直于DC,所以三角形DEC是以DE为斜边的直角三角形。DC=5,CE=12,所以DE=13

1.
因为AC=6 BC=8 所以BC=10
又D为AB中点 所以CD=AB/2=5
又EC=12 (ECD也为Rt三角型)
所以ED=13
2.
将直角三角形AA1C提出来看
设正方体变长为1
AA1=1 AC=根号2 A1C=根号3 A1H=1/根号3 HC=2/根号3
所以A1H:HC=2
3.
作PO垂...

全部展开

1.
因为AC=6 BC=8 所以BC=10
又D为AB中点 所以CD=AB/2=5
又EC=12 (ECD也为Rt三角型)
所以ED=13
2.
将直角三角形AA1C提出来看
设正方体变长为1
AA1=1 AC=根号2 A1C=根号3 A1H=1/根号3 HC=2/根号3
所以A1H:HC=2
3.
作PO垂直于ABCD O在ABCD内
AO平方+CO平方=BO平方+DO平方(此为矩形的一性质 证明很简单 应该能直接写)
所以PA平方+PC平方=PB平方+PD平方
所以PA=1
别晚上了 现在就OK乐

收起

1、作DF⊥BC,DG⊥AC,连接DC,则DC为矩形DFCG的对角线
∵D是斜边AB的中点
∴DF=3,DG=4
则DC=5(勾股定理),
∵EC⊥平面ABC
∴△ECD为Rt△,
又已知EC=12,DC=5
则斜边ED=13(勾股定理)

全部展开

1、作DF⊥BC,DG⊥AC,连接DC,则DC为矩形DFCG的对角线
∵D是斜边AB的中点
∴DF=3,DG=4
则DC=5(勾股定理),
∵EC⊥平面ABC
∴△ECD为Rt△,
又已知EC=12,DC=5
则斜边ED=13(勾股定理)
2、连接AC,△CAA1为Rt△
设正方体的边长为1,
则AC=根号2
AH⊥A1C,
则AA1×AC=A1C×AH
AH=三分之根号六
∴△AHA1,△AHC都为Rt△,
根据勾股定理得:
A1H=根号下(AA1平方-AH平方)=(√3)/3
HC=根号下(AC平方-AH平方)=(2√3)/3
∴A1H:HC=1:2
3、由题意得:△PAB,△PAD,△PAC都为Rt△,
根据勾股定理:
PB平方=PA平方+AB平方=5 ①
PD平方=PA平方+AD平方=13 ②
PC平方=PA平方+AC平方=17 ③
AB平方+AD平方=AC平方 ④
①+②-③得出:
PA平方+AB平方+AD平方-AC平方=1
带入④得PA平方=1
∴PA=1

收起

1.∵△ABC是直角三角形,AC=6,BC=8
∴AB=10
又∵D是斜边AB的中点
∴AD=BD=CD=5
又∵EC⊥平面ABC,EC=12
∴ED=13
2.设正方体的边长为a
∵ABCD-A1B1C1D1是正方体
∴AC=√2a
又 ∵A1AC是Rt△
∴A1C=√3a

全部展开

1.∵△ABC是直角三角形,AC=6,BC=8
∴AB=10
又∵D是斜边AB的中点
∴AD=BD=CD=5
又∵EC⊥平面ABC,EC=12
∴ED=13
2.设正方体的边长为a
∵ABCD-A1B1C1D1是正方体
∴AC=√2a
又 ∵A1AC是Rt△
∴A1C=√3a
又 ∵AH⊥A1C
∴AH=√6/3a
∴A1H=√3/3a,HC=2√3/3a
则A1H:HC=1:2
3.∵PA⊥平面ABCD,PB=√5,PC=√17,PD=√13
则有,PA的平方+AB的平方=5
PD的平方+AD的平方=13
PA的平方+AC的平方=17
又 ∵ABCD是矩形
∴AC的平方=AB的平方+BC的平方
得,BC的平方=12
在Rt△PAD中,得PA=1

收起

八下平行四边形如图已知在RT△ABC中∩C=90 ,D是斜边AB的中点AE=AD求证ED=AC 在Rt三角形ABC中,D是斜边AB的中点,ED垂直AB交BC于点E,AB=20,AC=12,求四边形AD 如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若DE=2,CD=2根号5 则BE长为? 证明(二)垂直平分线 21.00前在Rt△ABC中,D是斜边AB的中点,ED垂直于AB于D,AB=20,AC=12,求四边形ADEC的面积 已知:在Rt三角形ABC中,D是斜边AB的中点,DE//BC,EF//DC,求证:四边形DBFE是等腰梯形 如果哦,在Rt△ABC中.D是斜边AB上的中点,已知CD=2,BC=1,求sin∠DCB,cos∠DCA的值.----- 如图,在RT△ABC中,D是斜边AB的中点,F是AC的中点,EF‖DC,交BC的延长线于点E,求证:四边形BEFD是等腰梯形 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,圆O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=? 在Rt△ABC中∠C=90°AC=6 BC=8.圆O为△ABC的内切圆,D点是斜边AB的中点,则tan∠ODA= RT三角形ABC中,斜边AB=2,D是斜边中点,则AC的平方+BC的平方+CD的平方=多少? 在Rt△ABC中,∠ABC=90°,D是斜边AC的中点,DE⊥AB,垂足为F,EF‖DB,交CB的延长线于在Rt△ABC中,∠ABC=90°,D是斜边AC的中点,DE⊥AB,垂足为F,EF‖DB交CB的延长线于点F.猜想:四边形CDEF是怎样的特殊四边形?) 如图,已知:在RT△ABC中,M为斜边AB的中点,D为BC延长线上的一点,∠B=2∠D,求证:CD=1/2AB 如图,已知Rt△ABC中AB=AC=2 ∠BAC=90°,P是斜边BC上的一个动点,PE⊥AB,PF⊥AC,连EF,D为BC边上中点.如图,已知Rt△ABC中,AB=AC=2 ,∠BAC=90°,P是斜边BC上的一个动点,PE⊥AB,PF⊥AC,连EF,D为BC边上中点,(1) 求斜边BC 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点.∠ECD是多少度?为什么? 在RT△ABC中,∠ACB=90度,CD⊥AB于D,∠ACD=3∠BCD.E是斜边AB的中点,∠ECD是多少度?⒏懂哒别乱回答额~ 在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,点E是斜边AB的中点,∠ECD是多少度? 在RT△ABC中,F是斜边AB的中点,D、E分别在边CA、CB上,满足∠DFE=90°.若AD=3.BE=4,则线段DE的长度为 Rt△ABC中,E是斜边AB的中点,DE⊥AB,且∠CAD∶∠BAD=1∶7,则∠BAC等于?