同角三角函数的基本关系式2道,1 已知tanα+cotα=9/4,则tan^2 α+secαcecα+cot^2 α的值等于____(85/16)2 若√((1-sinx)/(1+sinx))=(sinx-1)/cosx,则x的取值范围是___2kπ+π/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:49:03
同角三角函数的基本关系式2道,1 已知tanα+cotα=9/4,则tan^2 α+secαcecα+cot^2 α的值等于____(85/16)2 若√((1-sinx)/(1+sinx))=(sinx-1)/cosx,则x的取值范围是___2kπ+π/2
xSN@~-]H j`HX=֨DF`ƋF+&W(@o`5}uݣw zCoB_(W[Pj ǖ [ (QuWqlLābDMO;8ƃ\pG51^UjG,RS55֙6ΛPe c qg,_bTtfezA? +teGrlDa<0DcȊlz`+oЊRL~Yj$( @,, t$)ͫ(,zO>E2g…@1#RMEc ?ܻ2'֞9|bZ ?AF6\eb[zZ H"s

同角三角函数的基本关系式2道,1 已知tanα+cotα=9/4,则tan^2 α+secαcecα+cot^2 α的值等于____(85/16)2 若√((1-sinx)/(1+sinx))=(sinx-1)/cosx,则x的取值范围是___2kπ+π/2
同角三角函数的基本关系式2道,
1 已知tanα+cotα=9/4,则tan^2 α+secαcecα+cot^2 α的值等于____(85/16)
2 若√((1-sinx)/(1+sinx))=(sinx-1)/cosx,则x的取值范围是___
2kπ+π/2

同角三角函数的基本关系式2道,1 已知tanα+cotα=9/4,则tan^2 α+secαcecα+cot^2 α的值等于____(85/16)2 若√((1-sinx)/(1+sinx))=(sinx-1)/cosx,则x的取值范围是___2kπ+π/2
1.
tanα+cotα
=sinα/cosα+cosα/sinα
=(sin^2α+cos^2α)/(sinα*cosα)
=1/(sinα*cosα)
=9/4
所以sinα*cosα=4/9
tan^2 α+secαcecα+cot^2 α
=sin^2α/cos^2α+1/(sinα*cosα)+cos^2α/sin^2α
=[(sin^2α+cos^2α)^2-2sin^2α*cos^2α+sinα*cosα]/(sinα*cosα)^2
=(1-2sin^2α*cos^2α+sinα*cosα)/(sinα*cosα)^2
=85/16
2.
√((1-sinx)/(1+sinx))
=√(1-sinx)^2/[(1-sinx)(1+sinx)]
=√(1-sinx)^2/cos^2x
=/(1-sinx)/cosx/
因为√((1-sinx)/(1+sinx))=(sinx-1)/cosx
所以(sinx-1)/cosx≥0
2kπ+π/2