A是3阶实对称矩阵,A²+2A=O ,则A的特征值是0或2.这是为什么?写错了,应该是0或-2

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 12:32:06
A是3阶实对称矩阵,A²+2A=O ,则A的特征值是0或2.这是为什么?写错了,应该是0或-2
xV[KA+kN 5) BiJZ-K޲ƤmD^%&ә<zfgM -p\9go$bɞ -Y;ꞓ=GX =Er8a%'VAϮ@&A**9өc:C]]_smΧ$7i.PbǪP4;&*}ZXS"W\Z !-=,4}{E* TNAKb`3ԅ} ދoβӐsJΦuh-I$9Oѩ$]%4gˌxV򈤺h0 _Ǯ$fv|~aE~7{s_4ʼn=Y8}˨Mei9+\v-pDѭ8yo-ׅLr;nB5A9O)d-GsܒiX܃iiWbZ݀Wa޿cMG3 [N/z97XqjbJ,ưXUi@Y|>_]g|hU/m.?LXs]s'Sp]̩}Rntv~~#s/n'%̮L`wx] ,a)tC+*" ؍ݰ !; P ޛ>| 75Oc~ߑUnd8 %ĮZTr>&< ],۵s9\Y7'R9eE^D\kOz!μ-x3Pg$

A是3阶实对称矩阵,A²+2A=O ,则A的特征值是0或2.这是为什么?写错了,应该是0或-2
A是3阶实对称矩阵,A²+2A=O ,则A的特征值是0或2.这是为什么?
写错了,应该是0或-2

A是3阶实对称矩阵,A²+2A=O ,则A的特征值是0或2.这是为什么?写错了,应该是0或-2
设 a 是A的特征值
则 a^2+2a 是 A^2+2A 的特征值 (这是个定理)
因为 A^2+2A = 0,且零矩阵的特征值只能是0
所以 a^2+2a = 0
即 a(a+2) = 0
所以 a = 0 或 a = -2.
即 A的特征值只能是0或-2.
看了楼上解答,忍不住再答一下.
1楼乱解答,会误人的.
2楼不能说明特征值只能有0和-2

设A是向量空间的一个线性变换,如果空间中某一非零向量通过A变换后所奇异矩阵特征值
得到的向量和X 仅差一个常数因子,即AX=kX ,则称k为A的特征值,X称为A的属于特征值k的特征向量或特征矢量(eigenvector)。
因为A^2+2A=0
那么A(A+2E)=0
故|A(A+2E)|=0
即|A||A+2E|=0
那么特征值应该是0与-2

全部展开

设A是向量空间的一个线性变换,如果空间中某一非零向量通过A变换后所奇异矩阵特征值
得到的向量和X 仅差一个常数因子,即AX=kX ,则称k为A的特征值,X称为A的属于特征值k的特征向量或特征矢量(eigenvector)。
因为A^2+2A=0
那么A(A+2E)=0
故|A(A+2E)|=0
即|A||A+2E|=0
那么特征值应该是0与-2
你的答案是不是错了?

收起

A²+2A=O
A(A+2)=0
得A=0或A+2=0

首先有 |A| = (1/2)*(1/2)*(1/3) = 1/12
所以 A* = |A|A^(-1)
所以 12A* = 12*(1/12)A^(-1) = A^(-1)
所以 (0.5A^2)(-1) = (1/0.5)(A^2)^(-1) = 2(A^(-1))^2
所以 (0.5A^2)(-1)12A* - E = 2[A^(-1)]^3 - E.

全部展开

首先有 |A| = (1/2)*(1/2)*(1/3) = 1/12
所以 A* = |A|A^(-1)
所以 12A* = 12*(1/12)A^(-1) = A^(-1)
所以 (0.5A^2)(-1) = (1/0.5)(A^2)^(-1) = 2(A^(-1))^2
所以 (0.5A^2)(-1)12A* - E = 2[A^(-1)]^3 - E.
再由A的特征值为1/2,1/2,1/3得 A^(-1)的特征值为 2,2,3
所以 2[A^(-1)]^3 - E 的特征值为 2*2^3 - 1, 2*2^3 - 1, 2*3^3 - 1, 即15,15,53
所以 | 2[A^(-1)]^3 - E | = 15*15*53
所以 |(0.5A^2)(-1)12A* - E| = 15*15*53
结论数值有些大, 是不是题目有问题, 不过思路就是这样.
有问题请追问
满意请采纳^_^
7月D8

收起

首先有 |A| = (1/2)*(1/2)*(1/3) = 1/12
所以 A* = |A|A^(-1)
所以 12A* = 12*(1/12)A^(-1) = A^(-1)
所以 (0.5A^2)(-1) = (1/0.5)(A^2)^(-1) = 2(A^(-1))^2
所以 (0.5A^2)(-1)12A* - E = 2[A^(-1)]^3 - E.

全部展开

首先有 |A| = (1/2)*(1/2)*(1/3) = 1/12
所以 A* = |A|A^(-1)
所以 12A* = 12*(1/12)A^(-1) = A^(-1)
所以 (0.5A^2)(-1) = (1/0.5)(A^2)^(-1) = 2(A^(-1))^2
所以 (0.5A^2)(-1)12A* - E = 2[A^(-1)]^3 - E.
再由A的特征值为1/2,1/2,1/3得 A^(-1)的特征值为 2,2,3
所以 2[A^(-1)]^3 - E 的特征值为 2*2^3 - 1, 2*2^3 - 1, 2*3^3 - 1, 即15,15,53
所以 | 2[A^(-1)]^3 - E | = 15*15*53
所以 |(0.5A^2)(-1)12A* - E| = 15*15*53
结论数值有些大, 是不是题目有问题, 不过思路就是这样.
有问题请追问
满意请采纳^_^
7月w0

收起