∫[1→+∞] 1/(e^x+e^(2-x))dx=________________.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 09:23:21
∫[1→+∞] 1/(e^x+e^(2-x))dx=________________.
x){Ա:Q$Gb 5R*S4t+45S*lрMR> lȵ)v3|I= P@LTy$HH!$P-MOv>]%%@)3DA`RK %%@%)`&SS+($1aHF`FPӴ~qAb(6gM)

∫[1→+∞] 1/(e^x+e^(2-x))dx=________________.
∫[1→+∞] 1/(e^x+e^(2-x))dx=________________.

∫[1→+∞] 1/(e^x+e^(2-x))dx=________________.
答案:π/4e;
∫[1→+∞] 1/(e^x+e^(2-x))dx=∫[1→+∞] e^x/(e^2x+e^2)dx=∫[1→+∞] 1/(e^2x+e^2)de^x
不妨令t=e^x,则有
∫[1→+∞] 1/(e^x+e^2)de^x==∫[e→+∞] 1/(t^2+e^2)dt=1/e∫[e→+∞] 1/[(t/e)^2+1]d(t/e)
==1/e*arctan(t/e)[e→+∞]=1/e(π/2-π/4)=π/4e