A是n阶矩阵,Ax=0的有非零解的充要条件是|A|=0,为什么?能够证明么?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:31:45
xn@_}F`Xߡ(wڍY%6 Ua.C-QR_̜ZR7y33Uٮ+E"kO4
Vbv[01m
W$U$B:wx
cG
f}26ghӨwim7M"*bCuWsJ}[+tp#5h#tJ3
aFBXf4e0{ՅΗَoMʾR$Jޣr2C!d֨d҉n&ZkEh>s X7@|+QZQ)i%BKipioةNI>e-u Oqц~ƏS>3s/`-wǵr&5˅OuEoY
A是n阶矩阵,Ax=0的有非零解的充要条件是|A|=0,为什么?能够证明么?
A是n阶矩阵,Ax=0的有非零解的充要条件是|A|=0,为什么?能够证明么?
A是n阶矩阵,Ax=0的有非零解的充要条件是|A|=0,为什么?能够证明么?
必要性:假设|A|不为0,则n阶矩阵A可逆,AX=0两边同时左乘A逆得X=0,即说明X只有0解,与条件矛盾,故|A|=0
充分性:将A写成列向量的形式,A=[a1,a2,.an],其中ai为A的第i列,
同时X也写成向量形式,X=[x1,x2,...xn]T
则AX=0可表示成
x1a1+x2a2+.xnan=0
因为|A|=0,所以A的秩小于n,所以A的列向量线性相关,故存在不全为0的一组数 x1,x2,.,xn,使得x1a1+x2a2+.xnan=0
所以AX=0有非零解
这道题在线性代数里算比较基础的,建议你多看看书,线性代数好多题证明要用到线性相关的知识