∫(e,e^2)lnx/(x-1)^2dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:28:44
∫(e,e^2)lnx/(x-1)^2dx
xn0_$FYxHaK"uE!O R@ icд99;׹JF0beɈO8<|[Ip2@DIAqBZOцZkDcQք

∫(e,e^2)lnx/(x-1)^2dx
∫(e,e^2)lnx/(x-1)^2dx

∫(e,e^2)lnx/(x-1)^2dx
∵∫[lnx/(x-1)^2]dx
=-∫lnxd[1/(x-1)]
=-[1/(x-1)]lnx+∫[1/(x-1)]d(lnx)
=-[1/(x-1)]lnx+∫{1/[x(x-1)]}dx
=-[1/(x-1)]lnx+∫{[x-(x-1)]/[x(x-1)]}dx
=-[1/(x-1)]lnx+∫[1/(x-1)]dx-∫(1/x)dx
=ln|x-1|-lnx-[1/(x-1)]lnx+C,
∴∫(上限为e^2、下限为e)[lnx/(x-1)^2]dx
={ln|x-1|-lnx-[1/(x-1)]lnx}|(上限为e^2、下限为e)
=ln|e^2-1|-ln(e^2)-[1/(e^2-1)]ln(e^2)
 -{ln|e-1|-lne-[1/(e-1)]lne}
=ln(e^2-1)-2-2/(e^2-1)-ln(e-1)-1-1/(e-1)
=ln(e+1)-3-2/(e^2-1)-1/(e-1).