初三的数学难题...已知:抛物线y=ax^2+bx+c与x轴的负半轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在Y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x^2-10x+16=0的两个根,且抛物线的对

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 02:35:09
初三的数学难题...已知:抛物线y=ax^2+bx+c与x轴的负半轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在Y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x^2-10x+16=0的两个根,且抛物线的对
xWKS+$%r]H#o7MRx6c\JCR-@d#mP a޾Z{FqjvY$Џ{y|ܞ}{v'svv<Uu]g?:'Cg݋ ξ{?pNΡ;Z/`X SbY q=ji[ Ko;gn`~0EdG0rҵ$\c&V! p3c8Yh&Cny(4ј9a7`v?'h9'&Mu!RA1UaFc+7+%LhKy߻>\gKQ/0W5] HgUTPj<;=NkƻacvVE[~x qגfnp ! vβ"u'o3rSnԄyXG 縷XgO>8h}Yo] "=~!] _Tr!\Vc~'zW7=T"yx㴶UVjFU ~:ΩT{Rb*%‘߭ў:V6n %X$dg[Yq%~2_;A"$~?_$B3ʹp@q5fl#'h<&|T\,zk ϣ@4F^b>+Bs<*]EgOՀ/)+^`*Bk\^-"p(((ո!#}8Bx ՟$pUݬGcԃ/CB_G _j-D\DqrbwRJ]Yo>SC Uo߷h}@T3SFe3ڕUNFX=8d}VXVjGv}^"ڱS#:Kw.,ㆨxW(\ed*42'łh'\Da~`=A[,B胟Yf@Enüz#:4+vwA3Gb)4'Mځ^hA"!)zG[m<8K`4jsЈmY[ڞ'ũ'bP)2TϪ0ԉhgfrk@W0v9 _ .? hiijѦ^Qv7X)9T_MCRKޘFMu{כ,1uJ匸HZb$f5pJ0J=,1DBB01!ua%`nVEK=I!`OyJ$!l:S&wtJgX:MeECNOǐՔ64 16rrǩzGogK3hzOMP1{KX ="Q%>#es*HWQs,I +2=pQVMŻrC\Gq[@Qs ʋq!^j 4=z|{PFmD)Z"κhh@ir9m/7Ӄa8K8Xtϼ

初三的数学难题...已知:抛物线y=ax^2+bx+c与x轴的负半轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在Y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x^2-10x+16=0的两个根,且抛物线的对
初三的数学难题...
已知:抛物线y=ax^2+bx+c与x轴的负半轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在Y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x^2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2
(1)求此抛物线的表达式(这问可以直接写答案)
(2)若点E是线段AB上的一个动点(与点A.B不重合),过点E作EF//AC交BC于点F,连接CE,当△ CEF的面积最大时,求点E的坐标,并求此时面积的最大值
(3)若平行于x轴的动直线l于抛物线交于点P,与直线AC交与点Q,点D的坐标为(-3,0).问:是否存在这样的直线l,使得△OPQ时等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由...
写得详细的加分o(∩_∩)o
没图
第三问打错了应该是
问:是否存在这样的直线l,使得△ODQ时等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由。。。
第一问和第二问我解出来了第三问我算了4个点,不晓得对不对。。。

初三的数学难题...已知:抛物线y=ax^2+bx+c与x轴的负半轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在Y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x^2-10x+16=0的两个根,且抛物线的对
(1)解方程得x1=2 x2=8 ∴OB=8 OC=2 又∵对称轴为直线x=-2 ∴A(-6,0) 代入A(-6,0) C(8,0) B(2,0)可得抛物线解析式为y=-2x²/3-8x/3+8
(2)设E(x,0),则AE=6+x BE=2-x 由△ACB∽EFB可得BE/AB=h/CO (h是指△EFB的EB边上的高) 即:(2-x)/8=h/8 ∴h=2-x 则S△CEF=S△ACB-S△ACE-S△EFB=
32-(6+x)4-(2-x)²/2=(-x²/2)-2x+6 ∵x<0 ∴S△CEF有最大值
-b/2a=-2 Smax=4ac-b²/4a=8
(3)我想问一下,点D的坐标有什么用?以我的估计,这个应该是让解△ODQ为等腰△的P的坐标吧?楼主.你回去再看看.完全可以自己算的.这种题算不上太难.类似此类的的题,我把我以前的帖子发到这里.你看看吧.
中考或学校考试(初三)中大多数会考到二次函数和反比例函数这两种,当然如果出题人聪明的话肯定会和一次函数、几何图形相结合,这些一般作为压轴题型.你可能还没有学习,我在这里总结一下应付中考题中二次函数综合题的方法
.1存在性问题.就是说让你求点,直线等,让其构成符合题意的数量关系、位置关系和特殊图形.这其中还细分等腰△、Rt△的存在.等腰△点的存在求解的方法一般是利用点距(两点间距离公式,即:设任意两点坐标A(x1,y1),B(x2,y2) 后面均以这两点坐标为例 ,则两点间距离为√(x1-x2)²-(y1-y2)².注意,根号是在整个式子之上的)公式求解.
对于Rt△,一般作辅助线(80%是向某个已知直线做垂线)来证三角形相似.也可以用一次函数的斜率公式进行尝试.这个也是比较有用的.(设一次函数过A与B点.则一次函数斜率公式:k=(y2-y1)/(x2-x1) ) 对二次函数的两大问题,我这些方法是建立在你的方程非4次之上的,注意这一点即可.
2最值,定值问题.一般会求某个几何图形的最值 ,这样的话找出这个几何图形与某个变量的二次函数关系即可,用顶点坐标或配方求最值.定值问题较前者就有些难度.这其中又细分为:转化求定值和利用几何图形关系求定值.最重要的是一定要找到要求的量与题目中要构成的量之间的关系,这是建立方程的基本.毕竟函数思维是和方程紧密结合的.对于其它函数,也有比较难的知识.
晚上见贴 顺便告诉你,这个应该是08年重庆市的最后一道压轴题,但是数好像变了,其他一点没变.我记得是这样的 .是应该有4个点,但这不是原题,所以你最好还是问一下老师.这四个点很好算啊,我告诉你方法.首先你设点的坐标,用代数式表示,之后用我前面写的两点距离公式代入就行了.如果你不明白这个公式,你就想勾股定理,这个公式就是根据勾股定理推出来的.之后解一元二次方程就行了.记住要分类讨论

画出图来

已知:抛物线y=ax^2+bx+c与x轴的负半轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上
大哥,点B到底是在X轴的正半轴上还是在负半轴上啊?愁人........

初三的数学难题...已知:抛物线y=ax^2+bx+c与x轴的负半轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在Y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x^2-10x+16=0的两个根,且抛物线的对 有关初三的难题(二次函数,要说明过程)1.已知反比例函数y=a/x(a不等于0),当x小于0时,y随x的增大而减小,则函数y=ax的平方+a的图像所经过的象限是____________.2.如果抛物线y=ax的平方+bx+c经过点A(1 初三数学二次函数抛物线题.(过程)已知抛物线y=ax^2+bx+c与抛物线y=4分之1x^2形状相同,开口方向相反,且当x=2时,函数有最大值4,求(1)求抛物线的解析式(2)当x取何值时,y随x的增大而减少错 初三数学圆与抛物线综合题抛物线y=ax^2+bx+c交y轴于点从c,已知抛物线的对称轴为x=1,b(3,0),c(0,-3)(1)求抛物线y=ax^2+bx+c的解析式(2)在抛物线对称轴上是否存在点P,使点P到B、C两点的距离之差最大 初三数学圆的难题 已知抛物线y=3ax²+2bx+c, (初三数学复习题)已知抛物线y=3ax²+2bx+c,(1) 若a=b=1,c=-1,求该抛物线与x轴公共点的坐标(2) 若a=b=1,且当-1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围(3 两道初三数学函数题.如图,点M(1,m)(m>0)是抛物线y=ax^2+bx+c的顶点,点A(1,0),若抛物线与y轴正半轴交于点B,且直线AB与抛物线有且只有一个交点,请判断三角形BOM的形状,并说明理由.如图,已知抛 已知抛物线y=ax的平方+bx+c(a 数学函数难题抛物线y=ax^2+bx+c,交x轴与点A、B,叫y轴与点D,以AB为直径的半圆M交y轴于点C.已知圆心M的坐标为(1,0)1)求抛物线的表达式(用含a的式子表示)2)设点C关于抛物线对称轴的对称点 已知抛物线Y=aX^2(a 初三的数学题目 ; 抛物线y=-X²+3aX-2 与抛物线y=X²+2X-b有相同顶点 求a b的值过程 初三数学 抛物线已知抛物线y=x2+mx+6与x轴交于AB两点.点P是此抛物线的顶点,当△PAB的面积为1/8时,求此抛物线的解析式. 初中抛物线题已知抛物线y=ax 急...初三二次函数难题二次函数y=ax^+bx-2的图像与正比例函数y=-2x的图像交于AB两点,与y轴交于点C,已知AC平行x轴,OB=2OA求:(1)点A坐标(2)二次函数解析式(3)若P是抛物线上一点,且△ABP的面积与△ABC 初三数学作业.急~~已知抛物线y=ax²-4x=m与x轴的一个交点为A(1,0)(1)求抛物线与x轴的另一个交点B的坐标.(顺带写一下过程谢谢) 初三 数学 求解,急~! 请详细解答,谢谢! (25 16:14:19)1.已知抛物线y=x的平方-2ax+9的顶点在坐标轴上,求a的值.2.已知二次函数y= - x的平方+(m-2)x+m+1.求:(1)说明,无论m取何值,这个二次函数的图 (初三数学)在平面直角坐标系xOy中,已知抛物线y=a{x}^{2}+4ax+c(a≠0)经过A(0,4),B(-3,1)两点,顶点为C.(1)求该抛物线的表达式及点C的坐标(2)将(1)中求得的抛物线沿y轴向上平移m(m>0)个单 一道初三的数学培优难题