设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 04:36:04
x){n_mZFqf^fQ6_fiTh>_t:gR*mIԡ_`gC-)@p)06P1k5)ԣmR
IT\cD.X5)(nCƇ[Qa_\g
R~jZ-h8#M]N 3E+ b
设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy
设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy
设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy
dy=f'(sinx)^2]d(sinx)^2+f'(cosx)^2]d(cosx)^2
=2sinxf'(sinx)^2]d(sinx)+2cosxf'(cosx)^2]d(cosx)
=2sinxcosxf'(sinx)^2]dx+2cosx(-sinx)f'(cosx)^2dx
=[sin2xf'(sinx)^2-sin2xf'(cosx)^2]dx
dy={sin2x* [f'(sinx^2)-f'(cosx^2)]}dx
设y=sinx/x^2,求f'(π/3)
设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy
设y=f(sinx)+e^x^2,f'(x)存在,求y'及dy
设f(x)=sinx f(x+2π)=
设f(sinx)=2-cos2x求f(cosx)
设函数f(x)=sinx,则[f(π/2)]'
设f(x)=x*sinx,求f'' (π/2)
设y=f(sinx),则dy=?
设y=(sinx)^x,则f'(x)
设y=f(x^3)+f(sinx),f具有一阶导数,求dy/dx
设f(x,y)= e^-sinx (x+2y),fx'(读作f次x)(0,1)=
设f(u)为可导函数,且y=f(sinx)+sinf(x),求y’
设f(x)满足f(-sinx)+3f(sinx)=4sinx*cosx(x的绝对值小于等于π/2)
设f(sinx)=(cosx)^2+sinx+5,求f(x)
设y=f(sinx),f(u)可微,则dy=_____.
设y=f(sinx),其中f为可导函数,求dY
设y=f(x)由方程x^(1+y)=y^(sinx)确定,求y'
设f(x)满足f(-sinx)+3f(sinx)=4sinx乘以cosx,(绝对值x