设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 04:36:04
设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy
x){n_mZFqf^fQ6_ fiTh>_t:gR*mIԡ_`gC-)@p)06P1k5)ԣmR IT\cD.X5)(nCƇ[Qa_\g R~jZ-h8#M]N 3E+b

设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy
设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy

设y=f[(sinx)^2]+f[(cosx)^2],f(x)可微,求dy
dy=f'(sinx)^2]d(sinx)^2+f'(cosx)^2]d(cosx)^2
=2sinxf'(sinx)^2]d(sinx)+2cosxf'(cosx)^2]d(cosx)
=2sinxcosxf'(sinx)^2]dx+2cosx(-sinx)f'(cosx)^2dx
=[sin2xf'(sinx)^2-sin2xf'(cosx)^2]dx

dy={sin2x* [f'(sinx^2)-f'(cosx^2)]}dx