y=sin^2x+2sinxcosx+3cos^2xy=sin^2x+2sinxcosx+3cos^2x(1)求函数的最小周期(2)求该函数的单调递增区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 20:24:14
y=sin^2x+2sinxcosx+3cos^2xy=sin^2x+2sinxcosx+3cos^2x(1)求函数的最小周期(2)求该函数的单调递增区间
y=sin^2x+2sinxcosx+3cos^2x
y=sin^2x+2sinxcosx+3cos^2x
(1)求函数的最小周期
(2)求该函数的单调递增区间
y=sin^2x+2sinxcosx+3cos^2xy=sin^2x+2sinxcosx+3cos^2x(1)求函数的最小周期(2)求该函数的单调递增区间
1、
y=(sin²x+cos²x)+2sinxcosx+(2cos²x-1)+1
=1+sin2x+cos2x+1
=√2sin(2x+π/4)+2
所以T=2π/2=π
2、
sin的系数为正
所以y的单调性和sin(2x+π/4)相同
sinx的增区间是(2kπ-π/2,2kπ+π/2)
所以2kπ-π/2<2x+π/4<2kπ+π/2
2kπ-3π/4<2x<2kπ+π/4
kπ-3π/8
y=sin^2x+2sinxcosx+3cos^2x
=1+2cos^2x+sin2x
=2+cos2x+sin2x=2+√2sin(π/4+2x)
最小周期T=π
单调递增区间2kπ-π/2<π/4+2x<2kπ+π/2
2kπ-3π/4<2x<2kπ-π/4
kπ-3π/8
1.化简原函数
原式=sin^2x+2sinxcosx+cos^2x+2cos^2x
=2cos^2x+1+sin2x
=2+cos2x+sin2x
=2+√2sin(2x+45)
2.最小周期:
T=2π/2=π
3.单调递增区间:
2kπ-π/2<π/4+2x<2kπ+π/2
2kπ-3π/4<2x<2kπ-π/4
kπ-3π/8
y=(1-cos2x)/2+sin2x+3*(1+cos2x)/2
=sin2x+cos2x+2
常数2不影响周期与单调性