设x.y∈R+,且xy-(x+y)=1,则x+y≥?或x+y≤?或xy≤?A.x+y>=2(根号2+1)x+y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:54:39
设x.y∈R+,且xy-(x+y)=1,则x+y≥?或x+y≤?或xy≤?A.x+y>=2(根号2+1)x+y
xUN@*;fxRcWBU**4Y G@C4h$*^B /3 B<8i+"sϽ3s\xRo(Z{u#s4܁m jX,Xg>]`EU0߼*b\$lU"?IjCo}wDdX:A6ęXz.1DXB5%GAF4<Յ#dEgP?Z^hm4`&TiҖi_KN}'TQd}?A>]RC&SO7^;_MPv|I͞y]șTAY&s]nB͹BMS_&Q+V9eFN")u p+uLAu]Бcy4Ts' 4̀\PI\@y#Fihɞg(7 ΎZ;Nw

设x.y∈R+,且xy-(x+y)=1,则x+y≥?或x+y≤?或xy≤?A.x+y>=2(根号2+1)x+y
设x.y∈R+,且xy-(x+y)=1,则
x+y≥?或x+y≤?或xy≤?
A.x+y>=2(根号2+1)
x+y

设x.y∈R+,且xy-(x+y)=1,则x+y≥?或x+y≤?或xy≤?A.x+y>=2(根号2+1)x+y
xy-(x+y)=1
xy-x-y=1
得y=(x+1)/(x-1)=1+2/(x-1)
x+y=x+(x+1)/(x-1)=(x-1)+2/(x-1)+2
因为x,y>0最小值取到时(x-1)=2/(x-1)
既x=(√2)-1
x+y=2√2+2
x+y>=2(xy)^(1/2)
xy-(x+y)=1
xy-2(xy)^(1/2)-1>=0
解得(xy)^(1/2)=1+2^(1/2)
又xy>0
xy>=(1+2^(1/2))^2=3+2*2^(1/2)

因为x,y>0
所以xy≤(x+y)^2/4
因为xy-(x+y)=1
所以1+(x+y)≤(x+y)^2/4
化简可得(x+y-2)^2≥8
所以x+y-2≥2√2或x+y-2≤-2√2
所以x+y≥2+2√2或≤2-2√2<0
因为x+y>0
所以x+y≥2+2√2
你也可以这么想:
因为x+y≥2√(xy)

全部展开

因为x,y>0
所以xy≤(x+y)^2/4
因为xy-(x+y)=1
所以1+(x+y)≤(x+y)^2/4
化简可得(x+y-2)^2≥8
所以x+y-2≥2√2或x+y-2≤-2√2
所以x+y≥2+2√2或≤2-2√2<0
因为x+y>0
所以x+y≥2+2√2
你也可以这么想:
因为x+y≥2√(xy)
xy-(x+y)=1
所以xy-1≥2√(xy)
化简的(√(xy)-1)^2≥2
同理可解得xy≥3+2√2
根据我的分析应该选A

收起

由xy-(x+y)=1得
y=(1+x)/(x-1)
=1+2/(x-1)
所以x+y=x+1+2/(x-1)
令f(x)=x+1+2/(x-1)
求导得1-2/(x-1)² ,令其等于0
求得x=1+√2
所以当x=根号2+1时有最小值
即f(1+√2)=2+2√2
所以x+y≥2+2√2

x+y>=2根号下(xy)
代入xy=1+(x+y)得,
x+y>=2根号下[1+(x+y)]
(x+y)^2-4*(x+y)-4>=0
方程等于零时两根为:(4+根号下(4*4-4*1*(-4)))/2=2+2倍根号2
(4-根号下(4*4-4*1*(-4)))/2=2-2倍根号2
>=0时解为:x+y<=2...

全部展开

x+y>=2根号下(xy)
代入xy=1+(x+y)得,
x+y>=2根号下[1+(x+y)]
(x+y)^2-4*(x+y)-4>=0
方程等于零时两根为:(4+根号下(4*4-4*1*(-4)))/2=2+2倍根号2
(4-根号下(4*4-4*1*(-4)))/2=2-2倍根号2
>=0时解为:x+y<=2-2倍根号2 或 x+y>=2+2倍根号2
又因x,y为正
所以 x+y>=2+2倍根号2

收起