设z=arctan(uv),而u=e^x,v=x^3,求dz/dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 02:25:33
设z=arctan(uv),而u=e^x,v=x^3,求dz/dx
x){n_mbQrIbFi΋RԸ 2ۊ8cgRS*lV_`gC 5U e@(Q KHS@JzqF`@]M//~ھY#j5+4f[jmla`=P=ц@{@3Ќ/.H̳yu

设z=arctan(uv),而u=e^x,v=x^3,求dz/dx
设z=arctan(uv),而u=e^x,v=x^3,求dz/dx

设z=arctan(uv),而u=e^x,v=x^3,求dz/dx
tan(z) = uv = x^3 e^(x)
dtan(z)/dx = sec^2(z) dz/dx = 3x^2e^(x)+x^3e^(x)
解出:
dz/dx = x^2(3+x)e^(x)/sec^2(z) //:1+tan^2(z)=sec^2(z)
= x^2(x+3)e^(x)/[1+x^6 e^(2x)]