x+2y+3z+4w=1,求x2+y2+z2+w2+(x+y+z+w)2最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:27:15
x+2y+3z+4w=1,求x2+y2+z2+w2+(x+y+z+w)2最小值
xPOK00xÐ+~a~Q!MNEP d=(meFxW0kN/C^&k62_PdPCnV\꼊o&Mdz_n<|Z[\p|P97lxh$lԏ&Qd}IO"PItT!ͲlصO89eCˣ)r[PVA,9. 5ʥ

x+2y+3z+4w=1,求x2+y2+z2+w2+(x+y+z+w)2最小值
x+2y+3z+4w=1,求x2+y2+z2+w2+(x+y+z+w)2最小值

x+2y+3z+4w=1,求x2+y2+z2+w2+(x+y+z+w)2最小值
x+2y+3z+4w=1,依权方和不等式得
x²+y²+z²+w²+(x+y+z+w)²
=x²/1+(3y)²/9+(5z)²/25+(7w)²/49+(x+y+z+w)²/1
≥[x+3y+5z+7w+(x+y+z+w)]²/(1+9+25+49+1)
=[2(x+2y+3z+4w)]²/85
=4/85.
故所求最小值为:4/85.