y=lg(sinx^2-4cosx+10)的值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 11:55:43
y=lg(sinx^2-4cosx+10)的值域
x)I(̫35I/64|>iÞ$R_`gC9Nygn#2 C]V)4C$ f)Di>]7N+x:{rHɳ.}ﳩtu6<ٽ%4

y=lg(sinx^2-4cosx+10)的值域
y=lg(sinx^2-4cosx+10)的值域

y=lg(sinx^2-4cosx+10)的值域
答:
y=lg(sinx^2-4cosx+10)
=lg(1-cosx^2-4cosx+10)
=lg(-cosx^2-4cosx+11)
=lg(-(cosx+2)^2+15)
可知定义域为R.
又因为y=lgt是增函数,所以当t最小时y最小,t最大时y最大.
当cosx=1时,-(cosx+2)^2+15有最小值6
所以此时y最小,为lg6
当cosx=-1时,-(cosx+2)^2+15有最大值14
所以此时y最大,为lg14
所以值域是[lg6,lg14]