设f(x)=x平方+|x-a| (a属于R) ,判断f(x)奇偶性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:39:13
设f(x)=x平方+|x-a| (a属于R) ,判断f(x)奇偶性
xRN@~Sҭ 1.GC@.Р`ē!i(bK= NRKow5 9uX2DmfXvB{ϛ4 «O"K(>?2Sy '6$2 n٘MCԦ7H(nޠ,EkxdW$,v4,Ƞ(c1j@p/H'Ё:(o܈S:@Heu}]!MXh﮺ "Z &lI)xμ%$!Oz:rs˚u ͸wwGjؿfp!/3ua}Xr"J

设f(x)=x平方+|x-a| (a属于R) ,判断f(x)奇偶性
设f(x)=x平方+|x-a| (a属于R) ,判断f(x)奇偶性

设f(x)=x平方+|x-a| (a属于R) ,判断f(x)奇偶性
f(-x)=(-x)^2+|-x-a|=x^2+|x+a|
当a=0时,f(-x)=x^2+|x|=f(x),所以f(x)是偶函数
当a≠0时,若f(-x)=f(x),必有|x+a|=|x-a|,所以(x+a)^2=(x-a)^2,即2ax=-2ax,即4ax=0,x=0,所以,当x≠0时f(-x)≠f(x),所以f(x)不是偶函数.若f(-x)=-f(x),则有f(-x)+f(x)=0,即x^2+|x+a|+x^2+|x+a|=0,所以x=0,x+a=0,从而a=0,矛盾,故f(-x)≠-f(x)
所以f(x)不是奇函数.
综上所述,当a=0时,f(x)是偶函数,当a≠时,f(x)既不是奇函数,也不是偶函数.

f(-x)=(-x)²+|-x-a|=x²+|x+a|
当a=0时,f(-x)=f(x),f(x)为偶函数
当a≠0时,f(x)非奇非偶