向量m=(2sinx,1),n=(√3cosx,2cos2x),函数f(x)=mn-t.(1)若方程f(x)=0在0

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 12:25:29
向量m=(2sinx,1),n=(√3cosx,2cos2x),函数f(x)=mn-t.(1)若方程f(x)=0在0
xSn@~dڍdxHJ"⃏Ԧ-IQ Z%Tm%(u Cݸ4 Q/Hp’;|}Y m7כC`KM&~{0/ t7Ǣ{5o"KϷEo4n) u (I8|;=:?:K-": GYr }OqOG;pRRC~4,]C %w!mIY8&-jz"5):(QPSAm)4oYzcr4k ĵdJdyno.k2IٜE},X+ U)'vsU؋r-W{4!?4ےG;,EԳ}! sՉA\*L^@M/Rw멭I<~,ٙ<c]$>4xykAqPÁY݌ؽȿ}_dc

向量m=(2sinx,1),n=(√3cosx,2cos2x),函数f(x)=mn-t.(1)若方程f(x)=0在0
向量m=(2sinx,1),n=(√3cosx,2cos2x),函数f(x)=mn-t.(1)若方程f(x)=0在0<=x<=π/2上有解,求t取值范围;
(2)在三角形ABC中,abc分别是ABC所对的边,当(1)中的t取最大值且f(A)=-1,b+c=2时,求a的最小值.

向量m=(2sinx,1),n=(√3cosx,2cos2x),函数f(x)=mn-t.(1)若方程f(x)=0在0
1:f(x)=2√3sinxcosx+2cos2x-t=√3sin2x+2con2x-t=2sin(2x+π/6)-t
f(x)=0,2sin(2x+π/6)=t,
0

f(x)=2√3sinxcosx+2cos2x-t=√3sin2x+2con2x+1-t=2sin(2x+π/6)+1-t
f(x)=0,2sin(2x+π/6)+1=t,
0<=x<=π/2, π/6<=2x+π/6<=7π/6,
0<=2sin(2x+π/6)+1<=3,
0<=t<=3
2. f(A)=-1,故sin(2A+π/6)=1/2,得A=0(...

全部展开

f(x)=2√3sinxcosx+2cos2x-t=√3sin2x+2con2x+1-t=2sin(2x+π/6)+1-t
f(x)=0,2sin(2x+π/6)+1=t,
0<=x<=π/2, π/6<=2x+π/6<=7π/6,
0<=2sin(2x+π/6)+1<=3,
0<=t<=3
2. f(A)=-1,故sin(2A+π/6)=1/2,得A=0(舍去)或A=π/3
a^2=b^2+c^2-2bccosA
=(b+c)^2-2bc-2bc*(1/2)
=4-3bc
b+c=2≧√bc(基本不等式) 所以bc≤1 4-3bc≤1 a≤1 所以a(max)=1

收起