计算:(3√6-5√2)/(8-4√3+√6-√2) (分母有理化)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:50:05
计算:(3√6-5√2)/(8-4√3+√6-√2) (分母有理化)
x){nuac)4B6 DT?h{ٜڞL$S ;*(`J7LFVlhna&a"qڑچXtSWÈtUM3Bkv!rllfeuc(Ħ YmJ6HdDmT(Rf_\gʘR*

计算:(3√6-5√2)/(8-4√3+√6-√2) (分母有理化)
计算:(3√6-5√2)/(8-4√3+√6-√2) (分母有理化)

计算:(3√6-5√2)/(8-4√3+√6-√2) (分母有理化)
(3√6-5√2)/(8-4√3+√6-√2)
=(3√6-5√2)/【(√6-√2)²+(√6-√2)】
=(3√6-5√2)/【(√6-√2)(√6-√2+1)】
=(3√6-3√2)/【(√6-√2)(√6-√2+1)】-(2√2)/【(√6-√2)(√6-√2+1)】
=3/【(√6-√2+1)】-2/【(√3-1)(√6-√2+1)】
=3/【(√6-√2+1)】-2(√3+1)/【(√3-1)(√3+1)(√6-√2+1)】
=3/【(√6-√2+1)】-(√3+1)/【(√6-√2+1)】
=(3-√3-1)/(√6-√2+1)
=(3-√3-1)(√6-√2-1)/(√6-√2+1)(√6-√2-1)
=(3-√3-1)(√6-√2-1)/(8-4√3-1)
=(3-√3-1)(√6-√2-1)/(7-4√3)
=(3-√3-1)(√6-√2-1)(7+4√3)/(7-4√3)(7+4√3)
=(3-√3-1)(√6-√2-1)(7+4√3)