y”=(y’/x)/(1+ln(y'/x)) y'(1)=1 y(1)=1/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:41:54
y”=(y’/x)/(1+ln(y'/x)) y'(1)=1 y(1)=1/2
xQJ@6!M!(9JSsjERbO)[~IRe7og4Իxuz.R`"qVӢo^pq4 ' . K9d#)>̳*XQC]O#']Eq؍~U)%^Ҹ7#\Zp~쒅r5Vg)ɦJU\h<2HMrH=)as9Wf;33jaI~qc2ZM<>pXt~{\x|

y”=(y’/x)/(1+ln(y'/x)) y'(1)=1 y(1)=1/2
y”=(y’/x)/(1+ln(y'/x)) y'(1)=1 y(1)=1/2

y”=(y’/x)/(1+ln(y'/x)) y'(1)=1 y(1)=1/2
p=y',p'(x+p)=p
(dp/dx)(x+p)=p
1.p≠0时 (dx/dp)=x/p+p
令z=x/p,x=zp,x'=z+z'p
z+z'p=z+p
z'p=p
x/p=p+C,因为x=1时,p=1所以C=0
x/y'=y'
y'=±√x,y=±(2/3)x^(3/2)+C
代入初值y=(2/3)x^(3/2)+1/3或y=-(2/3)x^(3/2)+5/3
2.当p=0时,无法满足y'(1)=1的条件
故结果为:
y=(2/3)x^(3/2)+1/3或y=-(2/3)x^(3/2)+5/3