∫ln(1+x^2)xdx怎么积分?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 22:52:23
∫ln(1+x^2)xdx怎么积分?
x){Ա:'OP"H"YCߓϗfoT_~ )f)kTm+PDt +RQDcq+5repmm`< m0EN-P&HObQrIbH~qAb4lSY0JCd4|uP6/

∫ln(1+x^2)xdx怎么积分?
∫ln(1+x^2)xdx怎么积分?

∫ln(1+x^2)xdx怎么积分?
∫ln(1+x²)dx
=xln(1+x²) - ∫xd[ln(1+x²)]
=xln(1+x²) - ∫2x²/(1+x²) dx
=xln(1+x²) - 2∫[1- 1/(1+x²)]dx
=xln(1+x²) - 2∫dx + 2∫1/(1+x²)dx
=xln(1+x²) - x² + 2arctanx + C

∫ln(1+x^2)xdx = 1/2∫ln(1+x^2)d(1+x^2) = 1/2 ( (1+x^2)ln(1+x^2) - (1+x^2))+C