求幂级数(x^n)/n的和函数,急∑(n=1,∝)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:26:12
求幂级数(x^n)/n的和函数,急∑(n=1,∝)
xj@_evN`B}Ɨp)Z,Af.DJM״VB PFF2vWB*;;v9ϦuQC%KJNzwm5bƽjѩWNj`s.@%aW8@qkϖaAB6hX;hM YAr[ORPiqC|5Zlˀd5Q 'xPW^sC'$RK64 vt⤎JJ/{4h'\g"Jd}"`㺻F|ӧOvәQy1EgLX>kVINoEsxj/Ua]Decb~7lQ

求幂级数(x^n)/n的和函数,急∑(n=1,∝)
求幂级数(x^n)/n的和函数,急
∑(n=1,∝)

求幂级数(x^n)/n的和函数,急∑(n=1,∝)
设S(x)=∑(x^n)/n ,由系数比值法易求出收敛域为 [-1,1)
求导,得 S'(x)=∑x^(n-1) ,此为几何级数
所以 S'(x)=1/(1-x)
两端求定积分,积分限取为0和x
则得S(x)-S(0)=-ln(1-x)
在原级数中,令x=0,得S(0)=0
所以S(x)=-ln(1-x) ,x ∈ [-1,1)

∑(n=1,∝)(x^n)/n=s(x)
s'(x)=(∑(n=1,∝)(x^n)/n)'
=∑(n=1,∝)[(x^n)/n]'
=∑(n=1,∝)x^(n-1)
=1/(1-x) (|x|<1)
s(x)=∫(0,x)1/(1-x)dx
=-ln(1-x) (-1<=x<1)