求limn→∞(1/1×2+1/2×3+…+1/n×n+1)和若limχ→1[(χ^2+aχ+b)÷(1-χ)]=4,求ab的值?要

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:39:08
求limn→∞(1/1×2+1/2×3+…+1/n×n+1)和若limχ→1[(χ^2+aχ+b)÷(1-χ)]=4,求ab的值?要
xRN@.۴L!.L~dhCtӅ 0 h , "+4qHિXYd=;f.OOeB4tiKnsYÉBm{=[Kvo5 2i{aB*,N+0X+ZraiMc0Aɰi$YSPD"͠RIbo8ğNFfgyۡ>qZR.^ -L*AGC?*joX%o[EgALDޤOZ! /:VFMۊ;`S)$VV+pIQΆr"*NrAF#B%ٸ*A v^$R׊

求limn→∞(1/1×2+1/2×3+…+1/n×n+1)和若limχ→1[(χ^2+aχ+b)÷(1-χ)]=4,求ab的值?要
求limn→∞(1/1×2+1/2×3+…+1/n×n+1)和若limχ→1[(χ^2+aχ+b)÷(1-χ)]=4,求ab的值?要

求limn→∞(1/1×2+1/2×3+…+1/n×n+1)和若limχ→1[(χ^2+aχ+b)÷(1-χ)]=4,求ab的值?要
1/1×2 + 1/2×3+…+1/n×n+1
=(1 - 1/2)+(1/2 -1/3)+...+(1/n -1/(n+1))
=1-1/(n+1)
limn→∞(1/1×2+1/2×3+…+1/n×n+1)=limn→∞(1-1/(n+1))=1
limχ→1[(χ^2+aχ+b)÷(1-χ)]的极限存在(=4),
分母->0,所以分子必->0,
可知limχ→1(χ^2+aχ+b)=0,
所以b=0,ab就是0.
事实上,a也可以求的:
代入h=1-χ,
limχ→1[(χ^2+aχ+b)/(1-χ)]
=limχ→1[(1-h)^2+a(1-h)+b]/h
=d[(1-x)^2+a(1-x)+b]/dx |x=0
=[-2(1-x)-a]|x=0
=-2-a
所以-2-a=4
a=-6