已知函数f(x)=x^2+bx+c,对任意实数x都有f(1+x)=f(1-x),试比较f(-1),f(1),f(2)的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:52:38
已知函数f(x)=x^2+bx+c,对任意实数x都有f(1+x)=f(1-x),试比较f(-1),f(1),f(2)的大小
xRMo@+jr]TTBŹY@UI%#h $" T-kN K"z}v潙Y+Q1+^cK{p Q&m~%34daHXqVy30:꓎˳t0728Nu9 ;>O|v!_.C%~<ؤXe0$,V 42O>#Ƚ9Jݑ K$QCD-S_Z$֎تo҄1dAgFT 1z} jZ}rC:}9]~ABvuן˫Eʆ'dnFԀ'`/A;'>dAY@$ Si1!mOޜX$C^6TFٷ޴#=k4?S.Dmp;!Q)BzUAwL&-چp'^7X

已知函数f(x)=x^2+bx+c,对任意实数x都有f(1+x)=f(1-x),试比较f(-1),f(1),f(2)的大小
已知函数f(x)=x^2+bx+c,对任意实数x都有f(1+x)=f(1-x),试比较f(-1),f(1),f(2)的大小

已知函数f(x)=x^2+bx+c,对任意实数x都有f(1+x)=f(1-x),试比较f(-1),f(1),f(2)的大小
高三的吧!我也是…《回答》:由f<1+x>=f<1-x>得:x=1时:f<2>=f<0>则x=1为对称轴,所以:<1,+无穷>为增函数.由对称轴x=1所以:f<-1>=f<3>由此:f<-1> > f<2> > f<3>

f(x) 是抛物线,存在对称轴,对称轴两侧距离对称轴相等两点 的函数y值相等。因此 利用 f(1+x)=f(1-x) 能求出对称轴。
[(1+x) + (1-x)]/2 就是对称轴
对称轴为 x = 1
上开口抛物线上,对称轴处是最低点,距离对称轴越远,y坐标越大。
因为 对称轴为 x = 1 ,所以
f(1) < f(2) < f(-1)...

全部展开

f(x) 是抛物线,存在对称轴,对称轴两侧距离对称轴相等两点 的函数y值相等。因此 利用 f(1+x)=f(1-x) 能求出对称轴。
[(1+x) + (1-x)]/2 就是对称轴
对称轴为 x = 1
上开口抛物线上,对称轴处是最低点,距离对称轴越远,y坐标越大。
因为 对称轴为 x = 1 ,所以
f(1) < f(2) < f(-1)

收起