设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 02:30:48
x){n߳i;_l6+8;j(XlF=w)D^6}ڿeCӝ۞mlr5T ɾR~O'P&Hff[)<L}5u]5ltM\:^5]Ɏ)
`m4t
M4! 1(k\f ١ 4UdiGQp&<;P` bٰ
设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1
设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1
设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1
解: 由 A^2-3A+4E=0
得 A(A-3E) = -4E
所以A可逆, 且 A^-1 = (-1/4)(A-3E)
再由 A^2-3A+4E=0
得 A(A+4E)-7(A+4E) + 32E = 0
所以 (A-7E)(A+4E) = -32E
所以 A+4E 可逆, 且 (A+4E)^-1 = (-1/32)(A-7E)
设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|
设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|
设方阵A满足等式A^2-3A-10E=0,证明A-4E可逆.
设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/
设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.
设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.
设方阵a满足e-2a-3a^2+4a^3+5a^4-6a^5=0证明e-a可逆
设方阵A满足2A^2+A-3E=0证明3E-A可逆
线性代数中,设方阵A满足A^2-2A+3E=0,如何证明 A-3E可逆.
设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵
设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E
设N阶方阵满足A^2-2A-4E=0,求证2A-E可逆
设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?
设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆
线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E
设方阵满足A^2-4A-E=0,证明A及4A+E均可逆,并求A及4A+E的逆矩阵
设方阵满足A^2-4A+E=0,证明A及4A+E均可逆,并求A及4A+E的逆矩阵
设n阶方阵A满足A^2+2A-3E=0证明A+4E的特征值都不是零.