设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 02:30:48
设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1
x){n߳i;_l6+8;j(XlF=w)D^6}ڿeCӝ۞mlr5TɾR~O'P&Hff[)<L}5u]5ltM\:^5]Ɏ) `m4t M4! 1(k\f ١4UdiGQp&<;P`bٰ

设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1
设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1

设方阵A满足 A^2-3A+4E=0 ,证明:A及 A+4E 都可逆,并求A^-1 及 (A+4E)^-1
解: 由 A^2-3A+4E=0
得 A(A-3E) = -4E
所以A可逆, 且 A^-1 = (-1/4)(A-3E)
再由 A^2-3A+4E=0
得 A(A+4E)-7(A+4E) + 32E = 0
所以 (A-7E)(A+4E) = -32E
所以 A+4E 可逆, 且 (A+4E)^-1 = (-1/32)(A-7E)