复数乘法有什么意义.一个旋转的问题怎么用复数解决
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 18:12:23
复数乘法有什么意义.一个旋转的问题怎么用复数解决
复数乘法有什么意义.一个旋转的问题怎么用复数解决
复数乘法有什么意义.一个旋转的问题怎么用复数解决
复数其实是认为定义的一种数,表达形式是 x=a+bi,其中i是复数的标志(当然没有也是复数,但也会划入实数),由此就构成了一个
.也就是说每一个复数在
上有唯一的点与之对应,这就相当于一个向量,起点是原点,终点是复数点,并且有自己的模,即向量线段的长.
复数的平方(或乘法)的运算是平时普通
的一项项乘开,是将其按照向量看待的.如果按你所说“像一个复数的平方从几何意义上来看就是一个
上那个点到原点的这个向量的平方.”只是将模的长度变为原来的平方,但这样的点在复平面上有无数个(以原点为心画圆),但复数是一个向量,有方向.向量相乘时,方向会发生改变.你那种“向量的平方只是实部的平方加虚部实数的平方.”是错的,你可以举一个很简单的例子验证.
终归一点,复数运算和向量运算时一样的!
哦,我指的是算法一样,但复数最终结果依情况而定,有可能是复数还有可能是实数.附属是一种特殊的向量,只能在复平面中应用,不是一般的
.a+bi=r(cosA+isinA)
c+di=q(cosB+isinB)
相乘=rq[(cosA+isinA)(cosB+isinB)]
(cosA+isinA)(cosB+isinB)
=cosAcosB-sinAsinB+i(sinAcosB+cosAsinB)
=cos(A+B)+isin(A+B)
所以(a+bI)(c+di)
=qr[cos(A+B)+isin(A+B)]
所以幅角相当于把c+di按逆时针旋转A
大小等于两原复数模之积,不是和
又如:复数AB表示为-a+bi,然后把它顺时针旋转60度.就变成了(-a+bi)(cos60度-isin60度)
靠你的思想
。a+bi=r(cosA+isinA)
c+di=q(cosB+isinB)
相乘=rq[(cosA+isinA)(cosB+isinB)]
(cosA+isinA)(cosB+isinB)
=cosAcosB-sinAsinB+i(sinAcosB+cosAsinB)
=cos(A+B)+isin(A+B)