已知函数f(x)=cos^2(x+π/12),g(x)=1+1/2sin2x1)设x=x0是函数y=f(x)图像的一条对称轴,求g(x0)的值; 2)求函数h(x)=f(x)+g(x)的单调递增区间麻烦给我很详细的过程,尤其是化简过程,我基础很差,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 21:01:19
已知函数f(x)=cos^2(x+π/12),g(x)=1+1/2sin2x1)设x=x0是函数y=f(x)图像的一条对称轴,求g(x0)的值; 2)求函数h(x)=f(x)+g(x)的单调递增区间麻烦给我很详细的过程,尤其是化简过程,我基础很差,
xSj@YJ&iW?$6u7M#Ӵ

已知函数f(x)=cos^2(x+π/12),g(x)=1+1/2sin2x1)设x=x0是函数y=f(x)图像的一条对称轴,求g(x0)的值; 2)求函数h(x)=f(x)+g(x)的单调递增区间麻烦给我很详细的过程,尤其是化简过程,我基础很差,
已知函数f(x)=cos^2(x+π/12),g(x)=1+1/2sin2x
1)设x=x0是函数y=f(x)图像的一条对称轴,求g(x0)的值;
2)求函数h(x)=f(x)+g(x)的单调递增区间
麻烦给我很详细的过程,尤其是化简过程,我基础很差,

已知函数f(x)=cos^2(x+π/12),g(x)=1+1/2sin2x1)设x=x0是函数y=f(x)图像的一条对称轴,求g(x0)的值; 2)求函数h(x)=f(x)+g(x)的单调递增区间麻烦给我很详细的过程,尤其是化简过程,我基础很差,
①f(x)=cos^2(x+π/12)=(1+ cos(2x+π/6))/2,
三角函数图像的对称轴必定穿过最高点或最低点,所以cos(2x0+π/6)=1或-1.
∴2x0+π/6= kπ,k∈Z. x0= kπ/2-π/12,k∈Z.
g(x0) =1+1/2sin2x0=1+1/2sin(kπ-π/6) =1±1/2=3/2或1/2.
②函数h(x)=f(x)+g(x)= cos^2(x+π/12)+1+1/2sin2x
=(1+ cos(2x+π/6))/2+1+1/2sin2x
= cos(2x+π/6)/2+1/2sin2x+3/2
=1/2(cos2xcosπ/6-sin2xsinπ/6) +1/2sin2x+3/2
=√3/4cos2x-1/4sin2x+1/2sin2x+3/2
=√3/4cos2x+1/4sin2x+3/2
=1/2(√3/2cos2x+1/2sin2x) +3/2
=1/2(cos2xcosπ/6+sin2xsinπ/6) +3/2
=1/2 cos (2x-π/6) +3/2
2kπ-π≤2x-π/6≤2kπ,k∈Z.
kπ-5π/12≤x≤kπ+π/12,k∈Z.
∴函数的单调递增区间是[kπ-5π/12, kπ+π/12] ,k∈Z.