求积分∫(1~4)(4-x)sin(x-1)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 04:32:10
求积分∫(1~4)(4-x)sin(x-1)dx
x){O;u030ѭ,Ө5LI*'HΆHrц&*H+@mMT I" W`h5I/i+ THрhbQZg"kb5Y!5PHꍁj!4Xk)mDL~qAb(@U

求积分∫(1~4)(4-x)sin(x-1)dx
求积分∫(1~4)(4-x)sin(x-1)dx

求积分∫(1~4)(4-x)sin(x-1)dx
∫[1→4] (4-x)sin(x-1) dx
=4∫[1→4] sin(x-1) dx-∫[1→4] xsin(x-1) dx
=-4cos(x-1) + ∫[1→4] x d(cos(x-1))
=-4cos(x-1) + xcos(x-1) - ∫[1→4] cos(x-1)dx
=-4cos(x-1) + xcos(x-1) - sin(x-1) |[1→4]
=-4cos3 + 4cos3 - sin3 + 4cos0 - cos0 + sin0
=3 - sin3