曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程请问 C1的导函数为y1'=2x ,C2的y2’=-2x-1我觉得 k=y1’=y2' so 2x=-2x+4 得 x=1 so k=2 但答案L的斜率为4 请问我哪儿错了

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:47:52
曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程请问 C1的导函数为y1'=2x ,C2的y2’=-2x-1我觉得 k=y1’=y2' so 2x=-2x+4 得 x=1 so k=2 但答案L的斜率为4 请问我哪儿错了
xU[OA+T!;S«HҒ&o( xIb$ZAˢ.OYakyi&M}9sw3elӽOuLn#XJ"Iuv b\ 5:ۦF1ZKɳ͎S_uPa6-ZʅFD&8tbYe{Ĥw[R*єZBD4V^#2;4D=g$ xJrb73AWPJ ڹklI]ngߒ?+?ӬN܄)D>% -v1OYȼ|yT{r4 ˊ>J}D%\|pM]bGaC @.x֎ ٸ{:PJqDR/:(,?jR8e{@3%HD/Z@m^A`9`lmMϔAd4LO5G)5vСFZtgmiRX14PxVZ{%~BxY6<~nX],;g#^:lebcfao ,k>([YҬe1&ױFdM\ 

曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程请问 C1的导函数为y1'=2x ,C2的y2’=-2x-1我觉得 k=y1’=y2' so 2x=-2x+4 得 x=1 so k=2 但答案L的斜率为4 请问我哪儿错了
曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程
请问 C1的导函数为y1'=2x ,C2的y2’=-2x-1
我觉得 k=y1’=y2' so 2x=-2x+4 得 x=1 so k=2 但答案L的斜率为4 请问我哪儿错了

曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程请问 C1的导函数为y1'=2x ,C2的y2’=-2x-1我觉得 k=y1’=y2' so 2x=-2x+4 得 x=1 so k=2 但答案L的斜率为4 请问我哪儿错了
直线L与C1和C2并不是在同一点相切,你是按在同一点相切做的
虽然斜率相等,但并不是由同一个x求出来的

你的解题方法错了,这样求斜率完全是错误的。正确的解法是:
设直线L的方程为 y=kx+b...........(1)
∵直线L与C1,c2都相切,
∴直线L与C1,c2都只有一个交点。
也就是说,方程kx+b=x²,kx+b=-(x-2)²分别只能有一个解。
用重根判别式△可分别得:k²+4b=0........(2)<...

全部展开

你的解题方法错了,这样求斜率完全是错误的。正确的解法是:
设直线L的方程为 y=kx+b...........(1)
∵直线L与C1,c2都相切,
∴直线L与C1,c2都只有一个交点。
也就是说,方程kx+b=x²,kx+b=-(x-2)²分别只能有一个解。
用重根判别式△可分别得:k²+4b=0........(2)
(4-k)²-4(b+4)=0........(3)
解(2)和(3)联立的方程组,可得 k1=0,b1=0,或k2=4,b2=-4.
把这两组值代入(1),得 y=0,y=4x-4
故与C1,c2都相切的直线L有两条,它们分别是:y=0,y=4x-4.

收起

设直线L与C1相切于(x0,x0^2)
C1:y=x^2=>y'=2x=>L为y=2x0(x-x0)+x0^2=2x0x-x0^2
设直线L与C2相切于(x1,-(x1-2)^2)
C2:y=-(x-2)^2=>y'=-2(x-2)=4-2x=>L为y=(4-2x1)(x-x1)-(x1-2)^2=(4-2x1)x+x1^2-4
则有4-2x1=2x0,-x0^2=x1^2-4
解得x0=2,x1=0或x0=0,x1=2
所以L为y=4x-4或y=0

曲线C1:y=1/x与曲线C2:y=x^2-3的交点个数是 曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程 曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程 已知曲线C1:y=x^2与C2:y=-(x-2)^2,直线l与C1,C2都相切,求直线l的方程 已知曲线C1:y=x²与C2:y=-(x-2)²,若直线L与C1、C2都相切,求L方程 已知曲线C1:y=x2与C2:y=-(x-2)2直线l与C1 C2都相切,求直线l的斜率 已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程. 抛物线C1的方程是(y-2)^2=-8(x+2),曲线C2与C1关于点(-1,1)对称,求曲线C2的方程 已知曲线C1:y=x2和C2:y=-(x-2)2,求C1和C2的公切线 曲线C1的方程y^2-x-4y+4=0,曲线C2的参数方程是**,则曲线C1与C2的关系是()?曲线C1的方程y^2-x-4y+4=0,曲线C2的参数方程是x=1-(cosφ)^2,y=(sinφ) +2 ,(φ为参数)则曲线C1与C2的关系是()?A C1与C2没有一段是 曲线C1:|y|=x与C2:x^2+Y^2=2的交点坐标是 求曲线C1:y=x^2与C2:y=x^3的公切线的斜率 求曲线C1:y=x^2与C2:y=x^3的公切线的斜率 y=f(x)沿x轴正方向平移2各单位得到曲线C1,曲线C1关于y轴对称得曲线C2求C2 已知曲线C1:y=x^2与C2:y=-(x-2),直线l与C1、C2都相切,求直线l的方程.C2:y=-(x-2)^2 已知曲线C1 x^2+y^2-2ax+a^2-1=0与C2 y^2=1/2x就实数a的值的变化讨论曲线C1与曲线C2的交点个数 已知曲线C1:y=x^2 与曲线C2:y=-x^2+2ax(a>1)交于点O,A,直线x=t(o 已知曲线C1:y=x^2 与曲线C2:y=-x^2+2ax(a>1)交于点O,A,直线x=t(o