已知函数f(x)=1/2(x-1)^2+Inx-ax+a(1)若a=3/2,求函数f(x)的极值(2)若对任意的x∈(1,3),都有f(x)>0成立,求a的取值范围.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:51:22
已知函数f(x)=1/2(x-1)^2+Inx-ax+a(1)若a=3/2,求函数f(x)的极值(2)若对任意的x∈(1,3),都有f(x)>0成立,求a的取值范围.
已知函数f(x)=1/2(x-1)^2+Inx-ax+a
(1)若a=3/2,求函数f(x)的极值
(2)若对任意的x∈(1,3),都有f(x)>0成立,求a的取值范围.
已知函数f(x)=1/2(x-1)^2+Inx-ax+a(1)若a=3/2,求函数f(x)的极值(2)若对任意的x∈(1,3),都有f(x)>0成立,求a的取值范围.
这道题虽然没做,但是方法还是固定的,
求极值只需要求导数,令导函数为0 ,注意题目,求到后是分式,通分之后让分子为零即可.
第二题利用第一题求得的极值点和在1 3 处的函数值都大于零即可求a的范围.
先做一下吧,不懂再问我.
a=3/2,f(x)=1/2(x-1)^2+lnx-3/2x+3/2, (x>0)f'(x)=(x-1)+1/x-3/2=x+1/x-5/2=(2x^2-5x+2)/(2x)=(2x-1)(x-2)/(2x),f'(x)=0,得到x1=1/2,x2=2在X<1/2,x>2时,f'(x)>0,函数单调增在1/2
全部展开
a=3/2,f(x)=1/2(x-1)^2+lnx-3/2x+3/2, (x>0)f'(x)=(x-1)+1/x-3/2=x+1/x-5/2=(2x^2-5x+2)/(2x)=(2x-1)(x-2)/(2x),f'(x)=0,得到x1=1/2,x2=2在X<1/2,x>2时,f'(x)>0,函数单调增在1/2
收起