an是等差数列,求​lim (Sn+Sn+1)/(Sn+Sn-1)lim (Sn+Sn+1)/(Sn+Sn-1)=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]=(2n²+4n+2)/2n²=1+2/n+1/n²我就想知道第一步怎么来的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:28:10
an是等差数列,求​lim (Sn+Sn+1)/(Sn+Sn-1)lim (Sn+Sn+1)/(Sn+Sn-1)=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]=(2n²+4n+2)/2n²=1+2/n+1/n²我就想知道第一步怎么来的
x)K{6cO{6uӎ:66)[[d*hi>kC6:O,b 2tAX[ <5eCs km2(PHZ1醍Ϛ7?ek

an是等差数列,求​lim (Sn+Sn+1)/(Sn+Sn-1)lim (Sn+Sn+1)/(Sn+Sn-1)=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]=(2n²+4n+2)/2n²=1+2/n+1/n²我就想知道第一步怎么来的
an是等差数列,求​lim (Sn+Sn+1)/(Sn+Sn-1)
lim (Sn+Sn+1)/(Sn+Sn-1)
=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]
=(2n²+4n+2)/2n²
=1+2/n+1/n²
我就想知道第一步怎么来的

an是等差数列,求​lim (Sn+Sn+1)/(Sn+Sn-1)lim (Sn+Sn+1)/(Sn+Sn-1)=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]=(2n²+4n+2)/2n²=1+2/n+1/n²我就想知道第一步怎么来的
an=n
sn=n(n+1)/2