求曲面z=x^2+2y^2及z=6-2x^2-y^2所围成立体的体积.(用重积分做)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:19:14
求曲面z=x^2+2y^2及z=6-2x^2-y^2所围成立体的体积.(用重积分做)
xTrG~PYI1NttrIUI[J*)Y,? ג%KE-,+Axjzf+@J%U,;3;uW~ߎS!\ c-OTFQ\eNTG^ĒCJTB[nlWqx y*ҟCc^/z.zrDu/y$쬰M>.F$^U9}TD7+/g]'.%@7Ib 'XPƥGK ୹z+<İas w+ :Nb+2KNĽu(⤃ܤCj3zEƙQ1`;?EaYmރ*C#.nLVJ NJ9#},}+h# jK?QRH;!>jx-_ǒ,^_%+5f>S4~D縧W2p FX[SV@(TyFhˍ?~ug>ζzMXCW-tl\ǓK`47⑱Y@Lӭp@1pS `$10=3v&o$,KogN#

求曲面z=x^2+2y^2及z=6-2x^2-y^2所围成立体的体积.(用重积分做)
求曲面z=x^2+2y^2及z=6-2x^2-y^2所围成立体的体积.(用重积分做)

求曲面z=x^2+2y^2及z=6-2x^2-y^2所围成立体的体积.(用重积分做)
z=x^2+2y^2叫椭圆抛物面,教材里在“二次曲面”部分是介绍过这种曲面的,它的立体图形如开口向上的旋转抛物面,只不过用平行于xoy面的平面去截,截痕不是圆,而是椭圆.
z=6-2x^2-y^2也是椭圆抛物面,只不过开口向下,并且顶点从原点向上平移6个单位.
z=xy叫双曲抛物面,即马鞍面,它是“二次曲面”部分标准位置的马鞍面绕z轴旋转45度角以后得到的.
求曲面z=f(x,y)与z=g(x,y)围成的立体体积,其实是不需要知道曲面的形状的,方法如下:
(1)由z=f(x,y)与z=g(x,y)构成的方程组,消去z,就可以得到两曲面的交线在xoy平面内的投影曲线(一定是闭曲线,只要它们确实能够围成立体),投影曲线所围的区域D就是积分区域;
(2)在D内任意取一点,比较在该点处z=f(x,y)与z=g(x,y)两函数值的大小,函数值较大的那块曲面在上,另一块在下.例如点(u,v)∈D,有f(u,v)>g(u,v),则在D上就一定会有f(x,y)≥g(x,y),因而被积函数为:f(x,y)-g(x,y);
(3)求这个二重积分,就可以得到立体的体积了.

两曲面的交线在xy坐标面上的投影曲线是x^2+y^2=2,所以整个立体在xy面上的投影区域是D:x^2+y^2≤2 体积V=∫∫(D) [(6-2x^2-y^2)-(x^2+2y^2)]dxdy 用极坐标 =3∫(0~2π)dθ∫(0~√2) (2-ρ^2)ρdρ=6π