已知函数f(x)=loga1-mx/x-1(a>0,a≠1,m≠1)是奇函数,(1)求m的值 (2)判断函数f(x)在(1,+∞)上的单调性,并证明 (3)当x∈(n,a-2)时,函数f(x)的值域(1,+∞).求实数a与n的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:23:03
已知函数f(x)=loga1-mx/x-1(a>0,a≠1,m≠1)是奇函数,(1)求m的值 (2)判断函数f(x)在(1,+∞)上的单调性,并证明 (3)当x∈(n,a-2)时,函数f(x)的值域(1,+∞).求实数a与n的值.
xTNA~& tZ/Ћ>kZ.6i`UX+**V]컐W虝WMjnfwDc_ř:~Sї  ȧĦy-#>A~ C󃮆,iOX%NE *$t͉u幾Vi|x}>^$gvsm}M 2}/5F i1yZorH{Jȿ?Ki^X{ Я &zC:sMj>L'EMbtӧ

已知函数f(x)=loga1-mx/x-1(a>0,a≠1,m≠1)是奇函数,(1)求m的值 (2)判断函数f(x)在(1,+∞)上的单调性,并证明 (3)当x∈(n,a-2)时,函数f(x)的值域(1,+∞).求实数a与n的值.
已知函数f(x)=loga1-mx/x-1(a>0,a≠1,m≠1)是奇函数,
(1)求m的值 (2)判断函数f(x)在(1,+∞)上的单调性,并证明
(3)当x∈(n,a-2)时,函数f(x)的值域(1,+∞).求实数a与n的值.

已知函数f(x)=loga1-mx/x-1(a>0,a≠1,m≠1)是奇函数,(1)求m的值 (2)判断函数f(x)在(1,+∞)上的单调性,并证明 (3)当x∈(n,a-2)时,函数f(x)的值域(1,+∞).求实数a与n的值.
这个题目不难
1.根据函数性质,可以解出m=-1
2.分两种情况,1>a>0,时是增函数
a>1时是减函数
再用单调性证明一下
3.利用2的情况讨论一下就OK了
过程你自己写吧

因为函数f(x)=loga(1-mx/x-1) (a>1.m不等 于1)是奇函数,所以m=-1即函数f(x)=loga[(1+x)/(x-1)] ,又因为函数g(x)=-ax2+8(x-1)af(x)次方-5=ax²+8(x-1)*a^{loga[(1+x)/(x-1)] }-5=ax²+8(1+x)-5,x>1或者x<-1,即g(x)=ax²+8x+3=a(x+4/...

全部展开

因为函数f(x)=loga(1-mx/x-1) (a>1.m不等 于1)是奇函数,所以m=-1即函数f(x)=loga[(1+x)/(x-1)] ,又因为函数g(x)=-ax2+8(x-1)af(x)次方-5=ax²+8(x-1)*a^{loga[(1+x)/(x-1)] }-5=ax²+8(1+x)-5,x>1或者x<-1,即g(x)=ax²+8x+3=a(x+4/a)²+3-16/a,当a≥8时,函数g(x)在(-1,+∞)上是增函数,因为对于a≥8,1≤x≤t时,-5≤g(x)≤5恒成立,即-5≤at²+8t+3≤5,所以-8/x²-8/x≤a≤2/x²-8/x,所以2-8(1/x+1/2)²≤a≤2(1/x-4)²-8,即2-8(1/x+1/2)²≤8,对于任意的1<x<t恒成立,当a≤2(1/x-4)²-8时,即1/x≥4-√[(a+8)/2],当a=8时,4-√[(a+8)/2]取得最大值,又因为4-√[(a+8)/2]>0,所以解得:a<24,当8≤a<24时,x≤1/(4-√[(a+8)/2])

收起

已知函数f(x)=loga1-x/x+b,(a>0且a不等于1)的定义域为(-1,1) f(x)=loga1+x除以1-x求函数定义域~ 函数f(x)=-loga1/x (0<a<1)的图像大致是说一下为什么-loga1/x=loga(x) 已知函数f(x)=loga1+x/x-1(a>0,a不等于1)判断fx在(1,正无穷)上的单调性具体点 已知函数f(x)=loga1+x/1-x,(a>0且a不等1),求函数f(x)的定义域,判断函数f(x)的奇偶性并证明 已知f(x)=loga1-1/x+x (a>0 ,a不等于1) 求f(x)的定义域 已知f(x)=loga1+x/1-x(a>0,a≠1)判断f(x)的奇偶性 已知函数f(x)=loga1+x/1-x(a0,a不等于1) 讨论函数的单调性f(x)=loga(1+x)/(1-x)(a>0.a≠1) 数学难题已知函数F(x)=LOGa1+X/1-X (a>0,a不等于1) (1)求F(x)的定义域 (2)当a>1时,求F(x)>0的x取值范围. 已知函数f(x)=loga1-mx/x-1(a>0,a不等于1)的图像关于原点对称.1,求m的值第2问是:判断f(x)在(1,正无穷)上的单调性,并根据定义证明 已知函数f(x)=loga1-mx/x-1(a>0,a≠1,m≠1)是奇函数.1)求m的值 (2)判断函数f(x)在(1,+∞)上的单调性,并证明 (3)当x∈(n,a-2)时,函数f(x)的值域(1,+∞).求实数a与n的值.第2问与第3问不懂啊....a> 已知函数f(x)=loga1-mx/x-1(a>0,a≠1,m≠1)是奇函数,(1)求m的值 (2)判断函数f(x)在(1,+∞)上的单调性,并证明 (3)当x∈(n,a-2)时,函数f(x)的值域(1,+∞).求实数a与n的值. 已知函数f(x)=loga(x-3a)与g(x)=loga1/x-a (a>0,a不等于1)已知函数f(x)=loga(x-3a)与g(x)=loga1/x-a (a>0,a不等于1)1:若f(x)与g(x)在给定区间[a+2,a+3]上都有意义,求a的值的范围.2:若|f(x)-g(x)|≤1在区间[a+2,a+3] 已知函数f(x)=X平方+mx+1,若命题存在x>0,f(x) 已知函数f(x)=mx^2-2x-1(m∈R),f(x) 已知函数f(x)=mx^2-2x-1(m∈R),f(x) 已知函数f(x)=mx^2-2x-(m€R),f(x) 已知函数f(x)=mx²-mx-1 若对于x∈[1,3],f(x)