已知数列{an}的前n项和为Sn,且S(n+1)=4an +2,a1=1.问:(1)设bn=a(n+1)-2an,求证{bn}是等差数列;(2)设cn=an/(2^n),求证{cn}是等差数列;(3)求数列{an}的通项an及前n项和Sn.过程啊~~~~~~~~~~各位大虾谢啦
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:57:58
已知数列{an}的前n项和为Sn,且S(n+1)=4an +2,a1=1.问:(1)设bn=a(n+1)-2an,求证{bn}是等差数列;(2)设cn=an/(2^n),求证{cn}是等差数列;(3)求数列{an}的通项an及前n项和Sn.过程啊~~~~~~~~~~各位大虾谢啦
已知数列{an}的前n项和为Sn,且S(n+1)=4an +2,a1=1.问:
(1)设bn=a(n+1)-2an,求证{bn}是等差数列;
(2)设cn=an/(2^n),求证{cn}是等差数列;
(3)求数列{an}的通项an及前n项和Sn.
过程啊~~~~~~~~~~各位大虾谢啦~~~~~~~
已知数列{an}的前n项和为Sn,且S(n+1)=4an +2,a1=1.问:(1)设bn=a(n+1)-2an,求证{bn}是等差数列;(2)设cn=an/(2^n),求证{cn}是等差数列;(3)求数列{an}的通项an及前n项和Sn.过程啊~~~~~~~~~~各位大虾谢啦
(1) 证明:∵Sn+1=4an+2
∴Sn+1-Sn=4an+2-4an-1-2
an +1=4an-4an-1
an+1=4(an-an-1)
an+1-2an=2(an-2an-1)
bn=2an-1
即 bn/ bn-1=2
∵a1=1
∴S2=4a1+2
a1+a2= 4a1+2
a2=3a1+2=3+2=5
∴b1= a2-2a1=5-2=3
∴{ bn}是以首项为3,公比为2的等比数列
(2)∵Cn= an/2^n
∴Cn-Cn-1= an/2^n- a n-1/2^n-1= an/2^n- 2a n-1/2^n= an- 2an-1/2^n= bn-1/2^n
=3*2^n-2/2^n =3/4
C1= a1/2=1/2
∴{ Cn}是以首项为1/2,公差为的3/4等差数列
(3)由(2)知{ Cn}是以首项为1/2,公差为的3/4等差数列
Cn=1/2+(n-1)3/4= an/2^n
∴an=2^n-1 +(n-1) 3*2^n/4
∴Sn=4an-1+2=4[2^n-2+ (n-1) 3*2^n/4]
=2+3(n-1)2^n