1+1\2+(1\3+2\3)+(1\4+2\4+3\4)+……(1\50+2\50+……49\50)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:25:24
1+1\2+(1\3+2\3)+(1\4+2\4+3\4)+……(1\50+2\50+……49\50)=?
xOJ1ƯI h\B t! :2(݉]" &Ōt5W𛤭t^^^~ߗ [1%T0P&82N]2j ա2-:B%fo᪺3 Q!I%#ש+ddOVi8O݊>&3d 23x[2] kyըFjnF~?ӟl_w9,'4qjFt

1+1\2+(1\3+2\3)+(1\4+2\4+3\4)+……(1\50+2\50+……49\50)=?
1+1\2+(1\3+2\3)+(1\4+2\4+3\4)+……(1\50+2\50+……49\50)=?

1+1\2+(1\3+2\3)+(1\4+2\4+3\4)+……(1\50+2\50+……49\50)=?
通式:1\n+2\n+3\n+.+(n-1)\n=(n-1)\2 @
所以 原式=1+(1\2+2\2+3\2+.+49\2)@
=1+612.5=613.5
有@标志的分子式子是:(首项+尾项)*项数\2

当n≥2时,
1/n+2/n+3/n+4/n+......+(n-1)/n
=1/n[1+2+3+4+......+(n-1)]
=1/n·n(n-1)/2
=(n-1)/2
∴原式
=1+1/2+2/2+3/2+......+49/2
=1+1/2(1+2+3+......49)
=1+1/2×[(1+49)×49/2]
=613.5

613.5