求不定积分∫x^2arcsinx/√(1-x^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:52:03
求不定积分∫x^2arcsinx/√(1-x^2)
xTn@QP4$ٔ P3c7*ʂٕR Q#>f_` iX=3ܱ]w⏽a}qcnOR+k FmA睷r g,#Qv6 qj@%b9Id/d8Œ T@0Pw}\*2HF+06Jgyz0M?O#jU mnz{u V/5п!Ul@+ 6=n#WL`mfڄQjpdcZ 1UP'"j6rS5hHdžeT-!\GQfѪ,tTp0Qs 8wY`M&`2|y}}eqw/Uy>"hhQYWKDKZ9}5Qe&(EA|9^ILX.u? oޝדa/ů[vXM֍ ͜V.^}=m]

求不定积分∫x^2arcsinx/√(1-x^2)
求不定积分∫x^2arcsinx/√(1-x^2)

求不定积分∫x^2arcsinx/√(1-x^2)
换元,t = arcsinx, dx = cost dt
I = ∫ t sin²t dt = (1/2) ∫ t (1﹣cos2t) dt
= (1/4) t² ﹣(t/4)sin2t + (1/4) ∫ sin2t dt
= (1/4) t² ﹣(t/4)sin2t ﹣ (1/8) cos2t + C
= (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx ﹣ (1/8) (1﹣2x²) + C
= (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx + (1/4) x² + C

不对,解法没对

∫x^2arcsinx/√(1-x^2)dx
=∫(x^2-1+1)arcsinx/√(1-x^2)dx
=-∫√(1-x^2)arcsinxdx+∫arcsinx/√(1-x^2)dx
=-x√(1-x^2)arcsinx+∫xd[√(1-x^2)arcsinx]+(1/2)(arcsinx)^2
=-x√(1-x^2)arcsinx+∫xdx-∫x^2arcsi...

全部展开

∫x^2arcsinx/√(1-x^2)dx
=∫(x^2-1+1)arcsinx/√(1-x^2)dx
=-∫√(1-x^2)arcsinxdx+∫arcsinx/√(1-x^2)dx
=-x√(1-x^2)arcsinx+∫xd[√(1-x^2)arcsinx]+(1/2)(arcsinx)^2
=-x√(1-x^2)arcsinx+∫xdx-∫x^2arcsinx/√(1-x^2)dx+(1/2)(arcsinx)^2
=(x^2/2)-x√(1-x^2)arcsinx-∫x^2arcsinx/√(1-x^2)dx+(1/2)(arcsinx)^2
移项除以2得:
∫x^2arcsinx/√(1-x^2)dx
=(1/4)[x^2-2x√(1-x^2)arcsinx+(arcsinx)^2]+C

收起