如图,四边形ABCD为矩形,四边形AEFG~四边形ADCB,AE·AD分别为它们的最短边,并3AE=2AD.求证:角1=角2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:26:34
如图,四边形ABCD为矩形,四边形AEFG~四边形ADCB,AE·AD分别为它们的最短边,并3AE=2AD.求证:角1=角2
xœmOPǿ `@H{ׇv-]Td_@bDdA8OQHվG7b={ϽfޯFZ6ռ^3n}ܸҲcw{8|WWo,kT;\kS 14wj])NN[fo]2MLYi*˅LB̢u"I^h%na 0Y!RRلp4R4o-!'@3e,!$J! É

如图,四边形ABCD为矩形,四边形AEFG~四边形ADCB,AE·AD分别为它们的最短边,并3AE=2AD.求证:角1=角2
如图,四边形ABCD为矩形,四边形AEFG~四边形ADCB,AE·AD分别为它们的最短边,并3AE=2AD.
求证:角1=角2

如图,四边形ABCD为矩形,四边形AEFG~四边形ADCB,AE·AD分别为它们的最短边,并3AE=2AD.求证:角1=角2
∵四边形ABCD为矩形,四边形AEFG~四边形ADCB
∴∠DAB=∠EAG=90°,AE:AD=AG:AB
∴∠DAE+∠EAF=∠GAB++∠EAF
∴∠DAE=∠GAB
∵AE:AD=AG:AB
∴⊿ADE∽⊿ABG
∴∠1=∠2

角DAE+EAF=EAF+GAF=90;则角DAE=GAF;
又因为DA:AB=AE:AG;
所以三角形ADE∽ABG;
∴∠1=∠2.

证明:∵四边形AEFG∽矩形ADCB.
∴AE/AD=AG/AB;∠EAG=∠DAB=90°,则∠BAG=∠DAE.
∴⊿EAD∽⊿GAB(两边对应成比例且夹角相等的两个三角形相似)
∴∠1=∠2.(相似三角形对应角相等)

由题意得:AE:AD=EF:CD=3:2;则两图形面积比=9:4,即AEFG面积=450*4/9=200cm²;
角DAE+EAF=EAF+GAF=90;则角DAE=GAF;又因为DA:AB=AE:AG;所以三角形ADE∽ABG;
则:∠1=∠2.

如图,四边形ABCD为矩形,E为中点,F为BC上一点,且三角形AEF全等于三角形ABF,若CD=12,则EF= 已知:如图,四边形ABCD是圆的内接四边形并且ABCD是平行四边形.求证:四边形ABCD是矩形. 如图,正方形ABCD边长为6,三角形ABE,ADF,与四边形AECF面积相等,求三角形AEF面积 如图ABCD是一个矩形,且长与宽的比为3:2,E在BC上,F在CD上,并且三角形ABE三角形ADF,四边形AECF的面积相等,四边形AECF的面积相等,求三角形AEF与矩形ABCD面积之比 如图ABCD是一个矩形,且长与宽的比为3:2,E在BC上,F在CD上,并且三角形ABE三角形ADF,四边形AECF的面积相等,四边形AECF的面积相等,求三角形AEF与矩形ABCD面积之比http://c.hiphotos.baidu.com/zhidao/wh%3D600%2C800/ 如图,四边形abcd 四边形ABcD是矩形, 如图,O为矩形ABCD对角线的交点,DE//AC,CE//BD.求证:四边形OCED是矩形 如图,四边形ABCD的对角线AC、BD互相垂直,E、F、G、H分别为四边中点.求证:四边形ABCD为矩形 如图,在四边形ABCD中,对角线AC,BD分别为直角三角形ACE和直角三角形BDE的斜边.求证:四边形ABCD为矩形. 如图,在四边形ABCD中,对角线AC,BD分别为直角三角形ACE和直角三角形BDE的斜边.求证:四边形ABCD为矩形. 如图在矩形ABCD中,△ABE,△ADF,四边形AECF的面积都相等,△AEF的面积是矩形ABCD面积的几分之几? 顺便向我说下为什么 如图,四边形ABCD与四边形OEFG 如图,矩形ABCD∽矩形BCEF,且四边形AFED是正方形,证明:矩形ABCD是黄金矩形 在长宽分别为a和1的矩形中 如图 截去两个边长x等腰直角三角形得四边形ABCD 求四边形ABCD的最大值 在长,宽分别为a和1的矩形中 如图 截去两个边长x等腰直角三角形得四边形ABCD 求四边形ABCD的最大值 如图,在四边形ABCD中,e为CD的中点角D等于角C等于90度AE等于BE,求证四边形ABCD是矩形 如图,已知四边形ABCD为平行四边形,点E在AB的延长线上,CE∥BD,且CE=CA,求证:四边形ABCD是矩形